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1. Introduction

Many deep results in mathematical general relativity concern the interplay between glob-
ally conserved quantities and the geometric structure of initial data sets, for example: the
minimal surface approach by R. Schoen and S.-T. Yau [44, 46] and the spinor method by
E. Witten [50] in the proof of the Riemannian positive mass theorem; the inverse mean cur-
vature flow by G. Huisken and T. Ilmanen [34] and the conformal flow by H. Bray [6] in the
proof of the Penrose inequality; and the constant mean curvature foliation by G. Huisken
and S.-T. Yau [35] (cf. R. Ye [51]) in establishing a geometric notion of center of mass.

In a broad sense, this article is intended to introduce some aspects of the connections
between the globally conserved physical quantities, such as the center of mass and angular
momentum, and the geometric structure of the manifold, using analysis of the scalar cur-
vature, or more generally the full constraint equations derived from the spacetime Einstein
equation. The main focus of the lecture notes is on the constant mean curvature foliations
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and the geometric center of mass of asymptotically flat initial data sets. This research pro-
gram was initiated by G. Huisken and S.-T. Yau in 1996 and has drawn great interest in
recent years (e.g. [51, 42, 38, 28, 22, 23, 24, 7, 8, 9, 40]). This article begins with a partial
survey of the classical results of constant mean curvature surfaces and introduces the now
standard concept of stability. We then discuss some recent progress on the constant mean
curvature surfaces in asymptotically flat initial data sets and the geometric center of mass.
In the last part, we adopt a more analytic approach to study the center of mass and angular
momentum from the Einstein constraint equations.

A spacetime is an (n + 1)-dimensional smooth manifold equipped with a Lorentzian
metric g of signature (−+ · · ·+). The Einstein equation is the tensor equation

Ric(g)− 1

2
R(g)g = T,

where the energy-momentum tensor T physically presents the energy-momentum density of
matter. A spacetime is called vacuum if it satisfies the Einstein equation with T = 0. The
prototype vacuum spacetime is Minkowski space Rn+1 equipped with the Minkowski metric
g = −(dx0)2 + (dx1)2 + · · ·+ (dxn)2. For a general energy-momentum tensor T , we assume
the dominant energy condition, which is known to hold for physically reasonable matter
fields. When expressed in terms of local coordinates, the left hand side of the Einstein
equation forms a system of second order equations on the metric components gαβ. The
seminal work of Choquet-Bruhat [25] proved that the left hand side of the Einstein equation
can be expressed as a nonlinear hyperbolic operator by using the so-called wave coordinates.
Finding a spacetime that satisfies the Einstein equation can then be viewed as the evolution
problem for a given initial data set. Thus, it is important to understand the physical and
geometric structure of initial data sets.

An initial data set for the Einstein equation is a triple (M, g, k), where (M, g) is an
n-dimensional Riemannian manifold and k is a symmetric (0, 2) tensor on M . The Gauss-
Codazzi equations for submanifolds, along with the Einstein equation, imply that if M is a
submanifold in a spacetime with the induced metric g and the induced second fundamental
form k, then (M, g, k) must satisfy the following constraint equations

R(g)− |k|2g + (trgk)2 = 2µ

divgk − d(trgk) = J,

where µ is the energy density and J is the momentum density. More specifically, let T be the
energy-momentum tensor and let ν be the future-directed timelike normal to M . We define
µ := T (ν, ν) and J := T (ν, ·). The dominant energy condition on the tensor T reduces to the
inequality µ ≥ |J |g at each point of M . When k ≡ 0, (M, g) is called a time-symmetric (or
Riemannian) initial data set. It is simple to see that in the time-symmetric case the system
of constraint equations becomes a single equation R(g) = 2µ. Thus the dominant energy
condition coincides with the condition that the scalar curvature of g is nonnegative, which is
a condition that naturally appears in Riemannian geometry. Note that, however, for general
k the dominant energy condition involves a system of equations and is more complicated.

One family of commonly studied models of isolated gravitational systems is the set of
asymptotically flat initial data sets. We say that an initial data set (M, g, k) is asymptoti-
cally flat (with one end) if there is a compact set K ⊂M and a coordinate diffeomorphism
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x : M \K → Rn \B for some closed ball B ⊂ Rn such that, for i, j = 1, 2, . . . , n,

gij − δij = O(|x|−q), kij = O(|x|−1−q),

and such that

µ = O(|x|−n−q0), Ji = O(|x|−n−q0),

where q > n−2
2

and q0 > 0. Here the expression f(x) = O(|x|−q) stands for a function
satisfying |f | ≤ C|x|−q for a constant C depending only on g, k. When a subscript k appears
in the expression f = Ok(|x|−q), it indicates additional fall-off rates on the derivatives
|∂If(x)| ≤ C|x|−q−|I| for |I| = 0, 1, . . . , k, but in this article we often omit the subscript k
and avoid the discussion about the optimal assumption on regularity.

Note that by definition an asymptotically flat initial data set has trivial topology outside
a compact set, but it is shown by J. Isenberg, R. Mazzeo, and D. Pollack [36] that there are
no topological obstructions within the compact set.

It is known that asymptotically flat initial data sets possess globally conserved physical
quantities. In 1962, R. Arnowitt, S. Deser, and C.W. Misner [1] proposed the definitions of
the (total) energy E and the linear momentum P of an asymptotically flat initial data
set (M, g, k) as follows, for i = 1, 2, . . . , n:

E = 1
2(n−1)ωn−1

lim
r→∞

∫
|x|=r

n∑
j,k=1

(
∂gjk
∂xk
− ∂gkk

∂xj

)
νj0 dHn−1

0

Pi = 1
(n−1)ωn−1

lim
r→∞

∫
|x|=r

n∑
j=1

πijν
j
0 dHn−1

0 .

Here, the integrals are computed in the coordinate chart M \ K ∼=x Rn \ B, νj0 = xj/|x|,
Hn−1

0 is the (n−1)-dimensional Euclidean Hausdorff measure, and ωn−1 is the volume of the
standard unit sphere in Rn. It is known that the scalar E and the vector (P1, · · · , Pn) are
geometric invariants by R. Bartnik [4] and P. Chruściel [14]. The celebrated positive mass
conjecture asserts that the ADM mass is nonnegative E ≥ |P |. In the time-symmetric case,
we may unambiguously use the ADM mass m to denote the energy E, since |P | = 0.

There are also the notions of center of mass and angular momentum for an asymptotically
flat initial data set. T. Regge and C. Teitelboim [43] and R. Beig and N. Ó Murchadha [5]
propose the following definitions of the center of mass CBORT and the angular momentum J
(if E 6= 0) as follows1, for k, ` = 1, 2, . . . , n:

C` = 1
2(n−1)Eωn−1

lim
r→∞

∫
|x|=r

[
x`

n∑
i,j=1

(
∂gij
∂xi
− ∂gii
∂xj

)
νj0 −

n∑
i=1

(gi`ν
i
0 − giiν`0)

]
dHn−1

0(1.1)

J(k`) = 1
(n−1)Eωn−1

lim
r→∞

∫
|x|=r

n∑
i,j=1

πijY
i

(k`)ν
j
0 dHn−1

0 ,(1.2)

where Y(k`) = xk ∂
∂x`
− x` ∂

∂xk
are the Euclidean rotational vector fields. To distinguish the

above definitions from other different notions of center of mass and angular momentum

1We remark that in some literature (for example [18]) the BORT center of mass and angular momentum
are sometimes defined as EC` and EJ(k`), respectively.
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(e.g. [35, 13]), we refer to the integrals (1.1) and (1.2) as the BORT center of mass and the
ADM angular momentum, respectively.

In contrast to the ADM energy-momentum, the integrals of CBORT and J are less well-
understood and may not even converge in general. In fact, explicit examples of asymptot-
ically flat initial data sets such that the integrals diverge have been constructed [5, 29, 10,
12, 11]. Nevertheless, the author shows that if one assumes the following Regge-Teitelboim
conditions, then (1.1) and (1.2) converge and transform correctly with respect to different
coordinate charts [27].

An initial data set (M, g, k) is said to satisfy the Regge-Teitelboim conditions if it is
asymptotically flat and in the coordinate chart M \K ∼=x Rn \B

gij(x)− gij(−x) = O(|x|−1−q), kij(x) + kij(−x) = O(|x|−2−q)

and

µ(x)− µ(−x) = O(|x|−n−q0−1), Ji(x)− Ji(−x) = O(|x|−n−q0−1).

Example 1.1 (Three-dimensional Schwarzschild manifolds). One of the most fundamental
examples in general relativity is the Schwarzschild spacetime, which describes the exterior
gravitational field of a static, spherically symmetric body. The totally geodesic time-slice
outside the apparent horizon of the Schwarzschild spacetime of mass m > 0 can be expressed
as a Riemannian manifold M = (2m,∞)× S2 endowed with the metric(

1− 2ms−1
)−1

ds2 + s2gS2 ,

where gS2 is the round metric on the unit sphere. One can readily check that M is the
manifold interior of an asymptotically flat initial data set with a minimal boundary and
one end, and it has zero scalar curvature. Mathematically one can extend M to a complete
asymptotically flat initial data set of zero scalar curvature by “doubling” M across its mini-
mal boundary. The complete two-ended asymptotically flat initial data set can be expressed
as a conformally flat metric (R3 \ {a}, gm,a), where gm,a = u4gE and

u = 1 +
m

2|x− a|
,

where gE is the Euclidean metric. We generally suppress “a” from the notation and write
gm = gm,a. One computes directly that m is the ADM energy and a is the BORT center of
mass. The asymptotic expansion of gm for |x| large is

gm =

(
1 +

2m

|x|
+

2ma · x
|x|3

+
3m2

2|x|2
+O(|x|−3)

)
gE.

It follows that m appears in the |x|−1-term of the expansion and the BORT center of mass ap-
pears in the odd part of the O(|x|−2)-term. This demonstrates that appropriate assumptions
need to be imposed on the leading order terms of the data in order for the integrals (1.1) and
(1.2) to converge. It explains the motivation behind the definition of the Regge-Teitelboim
conditions. We also note that the BORT center of mass of a Schwarzschild manifold is not
a point of the manifold. �

This article is organized as follows: In Section 2, we discuss the classical Alexandrov
Theorem about embedded constant mean curvature surfaces in Euclidean space. In Sec-
tion 3, we introduce variational formulas and stability of constant mean curvature surfaces,
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and then discuss the classical result of Barbosa and do Carmo about uniqueness of stable
constant mean curvature surfaces in Euclidean space. In Section 4, we show existence of
constant mean curvature surfaces in asymptotically flat initial data sets that are asymptotic
to Schwarzschild. We also prove that the geometric center of mass (defined in (4.8)) coincides
with the BORT center of mass. In Section 5, we present methods to analyze the spectrum
of the stability operator and show that the constant mean curvature surfaces constructed in
Section 4 are stable and form a smooth foliation. In Section 6, we discuss density results
for the Einstein constraint equations and an application to arbitrarily specifying the BORT
center of mass and the ADM angular momentum.

Acknowledgements The author was partially supported by NSF through DMS-1308837
and DMS-1452477. This set of lecture notes is based upon two mini-courses presented
in the 2012 Summer School on Mathematical General Relativity at MSRI and the 2013
Summer School on Mathematical General Relativity in Cortona, Italy. The author is very
grateful to the organizers Justin Corvino and Pengzi Miao for their warm hospitality to make
the summer schools memorable. Sincere appreciation goes to Justin Corvino for providing
valuable comments during the preparation of the lecture notes.

2. Uniqueness of Embedded CMC Surfaces

A fundamental problem in differential geometry is to characterize the constant mean
curvature hypersurfaces in a Riemannian manifold. A classical result due to Alexandrov
asserts that the only embedded and closed constant mean curvature surfaces in Euclidean
space are the round spheres. The original proof of Alexandrov is based on the arguments
which came to be known as the method of moving planes. We instead present another proof
due to S. Montiel and A. Ros [39, Section 6.4].

Let (M, g) be an orientable Riemannian manifold, and let Σn ⊂ Mn+1 be an immersed
two-sided hypersurface, i.e., there exists a globally defined smooth unit normal vector field
ν on Σ. The mean curvature of Σ with respect to ν is defined by H := divΣν. The
mean curvature detects how the (extrinsic) normal vector varies along Σ. According to our
convention, the mean curvature of a Euclidean n-sphere is n with respect to the outward
unit normal vector. An immersed submanifold is said to be closed if it is compact and has
no boundary and is said to be embedded if it has no self-intersection. We first review some
basic integral formulas involving mean curvature for closed hypersurfaces.

A conformal vector field X is a vector field on M that satisfies

LXg = 2fg,

for some function f : M → R, where LX is the Lie derivative.

Example 2.1 (cf. [7]). Consider the n-dimensional Schwarzschild metric with the ADM
mass m > 0 of the form gm = (1 − 2ms2−n)−1ds2 + s2gSn−1 on (s0,∞) × Sn−1, where

s0 = (2m)
1

n−2 . We change variables and set

r(s) =

∫ s

s0

(1− 2mτ 2−n)−
1
2 dτ.
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Define h(r) = s(r). We then rewrite the Schwarzschild metric in the form gm = dr2 +
h2(r)gSn−1 . Define the vector field X = h(r) ∂

∂r
. By direct computation,

LXgm = LX(dr)⊗ dr + dr ⊗ LX(dr) +X(h2)gSn−1

= 2h′(r)dr ⊗ dr + 2(h(r))2h′(r)gSn−1

= 2h′(r)gm.

Thus X is a conformal vector field that satisfies LXgm = 2fgm, where

f(r) = h′(r) =

(
dr

ds

)−1

= (1− 2ms2−n)
1
2 .

Also note that f satisfies the static potential equation

(∆gmf)gm − Hess(f) + fRicgm = 0.

�

In what follows, dµ will generally denote the induced surface measure on Σ ⊂ (M, g).

Theorem 2.2 (The Generalized Minkowski Integral Formula [7, Proposition 2.3]). Suppose
that (Mn+1, g) has a conformal vector field X such that LXg = 2fg for some function f .
Let Σn be a closed two-sided hypersurface in M , and let H be the mean curvature of Σ with
respect to the unit normal vector ν. Then∫

Σ

(nf −Hg(X, ν)) dµ = 0.

Proof. Recall that the Lie derivative LXg in a local frame {e1, . . . , en+1} has the expression

(LXg)(ei, ej) = g(∇eiX, ej) + g(ei,∇ejX)

for i, j = 1, 2, . . . , n + 1. We decompose the conformal vector field along Σ into X =
X ′ + g(X, ν)ν, where X ′ ∈ TΣ. Suppose further that {e1, . . . , en} is a local orthonormal
frame on Σ, and let ∇ be the covariant derivative of g. Then at each point of Σ

divΣX
′ +Hg(X, ν) = divΣX

′ + g(X, ν)
n∑
i=1

g(∇eiν, ei)

=
n∑
i=1

g(∇eiX, ei)

=
1

2

n∑
i=1

(LXg)(ei, ei)

= f
n∑
i=1

g(ei, ei)

= nf.

Integrating the above identity on Σ and applying the divergence theorem yields the desired
integral formula. �
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Theorem 2.3 (The Heintze-Karcher Inequality, cf. [7, Theorem 3.5]). Let Σn be a closed,
embedded, two-sided hypersurface in Rn+1. Suppose Σ = ∂Ω where Ω is a bounded region in
Rn+1 with volume Vol(Ω), and suppose that the mean curvature H is positive with respect to
the outward unit normal. Then

n

∫
Σ

1

H
dµ ≥ (n+ 1)Vol(Ω)

with equality if and only if Σ is a round sphere.

Proof. Consider a deformation F : Σ× [0,∞)→ Rn+1 given by

F (x, t) = x− tν(x),

where ν is the outward unit normal on Σ. Let Σt := F (Σ, t), with surface measure dµ
(suppressing the “t”-dependence). Let dΣ(p) denote the distance of p ∈ Rn+1 to Σ. For
t sufficiently small, Σt = d−1

Σ (t) is smooth, but Σt may begin to have self-intersection for
some t. Hence, instead of working on Σt, we consider Σ∗t defined as follows:

Σ∗t = Σt ∩ {F (x, s) : dΣ(F (x, s+ δ)) = s+ δ for some δ > 0}.
Note that Σ∗t is a smooth hypersurface contained in Σt. Since ∂F

∂t
= −ν. By the variation

formulas,

∂

∂t
dµ = −Hdµ

∂H

∂t
= |A|2 ≥ H2

n
∂H−1

∂t
= −H−2|A|2 ≤ − 1

n
.

Define Q(t) := n
∫

Σ∗t
H−1 dµ. Then

Q′(t) = n

∫
Σ∗t

(
−H−2|A|2 +H−1(−H)

)
dµ

≤ n

∫
Σ∗t

(− 1

n
− 1) dµ

= −(n+ 1)

∫
Σ∗t

dµ.

Thus, for τ ∈ (0,∞), we have

Q(0)−Q(τ) = −
∫ τ

0

Q′(t) dt

≥ (n+ 1)

∫ τ

0

∫
Σ∗t

dµdt

= (n+ 1)

∫
{dΣ(x)≤τ}

dx.

Since Q(τ) ≥ 0, we obtain the desired inequality by letting τ →∞. It is straightforward to
verify that Σ is umbilic if the equality holds. �
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Theorem 2.4 (Alexandrov’s Theorem). Let Σn be a closed, embedded, connected, two-sided
hypersurface in Rn+1 with constant mean curvature. Then Σ is a round sphere.

Remark. Note that the theorem fails if one removes the assumption that Σ is embedded.
H. Wente [49] produced an immersed torus of constant mean curvature in R3. Immersed
surfaces of higher genus are constructed by N. Kapouleas [37].

Proof. Note that the position vector field X = (x1, . . . , xn+1) in Rn+1 is a conformal vec-
tor field (with f = 1). By the Minkowski integral formula (Theorem 2.2) and divergence
theorem,

1

H

∫
Σ

n dµ =

∫
Σ

〈X, ν〉 dµ

=

∫
Ω

divRn+1X dx

= (n+ 1)Vol(Ω).

Thus, we obtain equality in the Heintze-Karcher inequality, which implies that Σ is a round
sphere. �

Note that the above theorem has been generalized to a large class of warped manifolds,
which in particular include the Schwarzschild manifolds by Brendle [7, Theorem 1.1].

3. Stable CMC Surfaces

3.1. Variational formulas. Let Σn be a smooth closed two-sided hypersurface in (Mn+1, g).
We are interested in how some geometric quantities on Σ, such as mean curvature, surface
area, and enclosed volume, change under deformations of Σ. The relevant formulas are
called the variational formulas. Consider a deformation of Σ along its normal direction
F (x, t) : Σ× (−ε, ε)→M satisfying

∂

∂t
F (x, t) = η(x, t)ν(x, t)

F (Σ, 0) = Σ,

where ν(x, t) is a unit normal to Σt := F (Σ, t). Define by Ft(x) = F (x, t). We further
suppose that Ft : Σ → M is an immersion. By direct computation, the first variation
formula says

d

dt

∣∣∣∣
t=0

Hn(Σt) =

∫
Σ

Hη dµ,(3.1)

where H = divΣν. If one allows arbitrary deformations, then we can strictly decrease the
volume of Σ by deforming Σ along −Hν, unless Σ is a minimal hypersurface (i.e. H ≡ 0).
Thus, minimal hypersurfaces are the critical points of the area functional. The second
variation formula at a minimal hypersurface says

d2

dt2

∣∣∣∣
t=0

Hn(Σt) =

∫
Σ

(
|∇Ση|2 − (|A|2 + Ric(ν, ν))η2

)
dµ,(3.2)
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where A is the second fundamental form of Σ and Ric is the Ricci tensor of (M, g). Define
the stability operator LΣ := −∆Σ− (|A|2 + Ric(ν, ν)). A minimal hypersurface is said to be
stable if

∫
Σ
ηLΣη dµ ≥ 0 for all smooth functions η.

If we restrict our attention to a smaller class of the deformations on Σ, hypersurfaces of
constant mean curvature H 6= 0 can appear as the critical points of the functional Hn(Σt).
Consider the (n+1)-dimensional signed volume V (t) between Σt and Σ. The volume function
satisfies the following variational formula.

Proposition 3.1. Let Σn be a smooth closed two-sided hypersurface in (Mn+1, g). Let
F (x, t) : Σ× (−ε, ε)→M satisfy

∂

∂t
F (x, t) = η(x, t)ν(x, t)

F (Σ, 0) = Σ,

where ν(x, t) is a unit normal to Σt := F (Σ, t). Define the volume function by

V (t) =

∫
Σ×[0,t]

F ∗ dvolM .

Then
d

dt

∣∣∣∣
t=0

V (t) =

∫
Σ

η dµ.

Proof. Let p ∈ Σ. Choose a local orthonormal frame {e1, . . . , en, ν} around F (p, 0). Then
F ∗ dvolM = a(t, p)dt ∧ dµ, where

a(t, p) = F ∗ dvolM

(
∂

∂t
, e1, . . . , en

)
= dvolM

(
∂F

∂t
, dFt(e1), . . . , dFt(en)

)
= g

(
∂F

∂t
, ν(x, t)

)
= η(x, t).

It follows that

d

dt

∣∣∣∣
t=0

V (t) =

∫
Σ

a(0, p)dµ =

∫
Σ

η dµ.

�

A variation such that V (t) = V (0) for all t ∈ (−ε, ε) is called a volume-preserving
variation. Proposition 3.1 shows that if a variation satisfies

∫
Σ
η dµ = 0, then it preserves

the volume between Σt and Σ “infinitesimally” at t = 0. In fact, it is shown, on the other
hand, that any smooth function η(x) on Σ such that

∫
Σ
η dµ = 0 gives rise to a volume-

preserving variation [2, 3].
One can readily see that for volume-preserving variations the hypersurfaces of constant

mean curvature are the critical points of the first variational formula. The second variation
formula at hypersurfaces of constant mean curvature becomes

d2

dt2

∣∣∣∣
t=0

Hn(Σt) =

∫
Σ

ηLΣη dµ+H
d2

dt2

∣∣∣∣
t=0

V (t) =

∫
Σ

ηLΣη dµ.
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Therefore, a hypersurface Σ of constant mean curvature is said to be stable if and only if∫
Σ

ηLΣη dµ ≥ 0

for all η ∈ C∞(Σ) such that
∫

Σ
η dµ = 0. More specifically, define

µ0 := inf

{∫
Σ

ηLΣη dµ : η ∈ C∞(Σ), ‖η‖L2(Σ) = 1, and

∫
Σ

η dµ = 0

}
.(3.3)

Then Σ is stable if µ0 ≥ 0. From above discussions, stable hypersurfaces are the local
minimizers of the area functional Hn(Σt) among volume-preserving variations.

Example 3.2. The n-dimensional sphere Sr in Rn+1 of radius r > 0 centered at the origin
is a stable hypersurface of constant mean curvature n/r. The stability operator on Sr is

L0 = −∆0 − (|A|2 + Ric(ν, ν)) = −∆0 −
n

r2
,

where ∆0 is the Laplace operator on Sr. Because µ0 is also an eigenvalue of −∆0, by
analyzing the eigenvalues of −∆0, we obtain µ0 = 0 with the eigenspace spanned by the
coordinate functions {x1, . . . , xn+1} restricted to Sr. Also note that L0 is self-adjoint and
the cokernel equals its kernel.

Example 3.3. Consider the Schwarzschild manifold M = (R3 \ {CBORT}, gm) where gm =
u4gE and

u = 1 +
m

2|x− CBORT|
.

For each r > 0, let Sr = {R3 : |x − CBORT| = r} be the constant mean curvature sphere
homologous to the minimal sphere.

We recall the transformation formula for conformal metrics. Let g1, g2 be two metrics on

an n-dimensional manifold that are related by g2 = u
4

n−2 g1. If ν1 is a unit normal with

respect to g1, then ν2 = u
−2
n−2ν1 is a unit normal with respect to g2. The corresponding mean

curvatures H1 and H2 are related by

H2 = u
−2
n−2

(
H1 +

2(n− 1)

n− 2
u−1∇ν1u

)
.(3.4)

It is not hard to see that umbilicity is preserved under conformal transformation, so the
sphere Sr is umbilic in M and has constant mean curvature 2r−m

r2 φ−3. This implies that Sm
2

is a minimal surface and S (2+
√

3)m
2

has largest mean curvature. The mean curvature of Sr

is increasing in r for m
2
≤ r ≤ (2+

√
3)m

2
, and decreasing in r if r ≥ (2+

√
3)m

2
. The stability

operator on Sr is given by

LSr = −∆Sr − (|ASr |2 + Ricgm(ν, ν))

= −φ−4∆0 +
−4r2 + 8rm−m2

2r4φ6
,

(3.5)

where ∆0 is the Laplacian operator of the round sphere of radius r. The smallest eigenvalue
of LSr is

λ0 =
−4r2 + 8rm−m2

2r4φ6
= − 2

r2
+

10m

r3
+O(r−4)
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with the corresponding eigenspace space spanned by constant functions. The next eigenval-
ues are

λ1 = λ2 = λ3 =
6m

r3φ6
=

6m

r3
+O(r−4)

with the corresponding eigenspace spanned by the coordinate functions {x1, x2, x3} restricted
to Sr. Thus, if m > 0, Sr is a stable hypersurface of constant mean curvature (with respect to
volume-preserving variations). In fact, the spheres {Sr} form a smooth foliation of constant
mean curvature spheres with the common center at CBORT. �

3.2. Uniqueness of stable CMC surfaces. A classical result of Barbosa and do Carmo [2]
characterizes the stable hypersurfaces in Euclidean space.

Theorem 3.4 (Barbosa-do Carmo [2]). The only closed, stable, connected, two-sided hyper-
surfaces in Euclidean space of constant mean curvature are round spheres.

Proof. Let Σn be a hypersurface in Rn+1 of constant mean curvature H that satisfies the
assumptions in the theorem. Consider the deformation F : Σ× (−ε, ε)→ Rn+1 given by

∂F

∂t
= ην,

where η = n−H〈X, ν〉 and X = (x1, . . . , xn+1) is the position vector of Σ. Then
∫

Σ
η dσ = 0

by the Minkowski integral formula (with f = 1). Let {e1, . . . , en} be a local orthonormal
frame along Σ. Note ∇eiX = ei where ∇ is the ambient connection. Hence, at a point where
∇Σ
ei
ej = 0,

∆Σ〈X, ν〉 =
n∑
i=1

eiei〈X, ν〉

=
n∑
i=1

ei (〈∇eiX, ν〉+ 〈X,∇eiν〉)

=
n∑
i=1

(〈∇eiei, ν〉+ 〈ei,∇eiν〉+ 〈∇eiX,∇eiν〉+ 〈X,∇ei∇eiν〉)

=
n∑
i=1

(〈ei,∇eiν〉+ 〈X,∇ei∇eiν〉)

= H − |A|2〈X, ν〉,(3.6)

where in the last equality we use
∑

i〈ek,∇ei∇eiν〉 = 0 for each k, because H is constant.
Let LΣ be the stability operator on Σ. The above computation implies that with H

constant and η = n−H〈X, ν〉,

LΣη = −∆Ση − |A|2η = H2 − n|A|2.
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Since Σ is stable, we have since H is constant and
∫

Σ
η dµ = 0

0 ≤
∫

Σ

ηLΣη dµ =

∫
Σ

(H2 − n|A|2)η dµ

= −n
∫

Σ

|A|2(n−H〈X, ν〉) dµ

= −n
∫

Σ

(n|A|2 −H2) dµ,

where in the last equality we use
∫

Σ
(H − |A|2〈X, ν〉) dµ = 0, which is implied by (3.6).

Because n|A|2 ≥ H2 with equality if and only if Σ is umbilic, we conclude that Σ is a
sphere. �

Remark. Note that the uniqueness result has been generalized to an ambient Riemannian
manifold which is complete, simply connected with constant sectional curvature [3]. More
precisely, the only stable closed hypersurfaces of constant mean curvature in a complete
simply-connected Riemannian manifold with constant sectional curvature are the geodesic
spheres.

4. Existence of CMC surfaces in asymptotically flat initial data sets

In 1996, Huisken and Yau initiated a program to study stable constant mean curvature
surfaces in asymptotically flat initial data sets. The program is motivated by finding a
geometric description of the center of mass in general relativity. We have seen in Example 3.3
the BORT center of mass of Schwarzschild manifold of positive mass is the common geometric
center of the (unique) foliation of the stable constant mean curvature surfaces. The goal
of Huisken-Yau’s program is to find a geometric description of the center of mass for the
general case of asymptotically flat initial data sets. Throughout this section, we consider
three-dimensional asymptotically flat initial data sets.

We recall that the three-dimensional Schwarzschild metric of mass m is denoted by gm =(
1 + m

2|x|

)4
gE. Here we are interested in the exterior region of the manifold, so the metric is

valid for all m ∈ R (not only for m > 0). For most of the results presented here, we focus on
an asymptotically flat manifold that is close to some Schwarzschild manifold in the following
sense.

Definition 4.1. A three-dimensional asymptotically flat initial data set (M, g) is said to
be Ck asymptotic to Schwarzschild of mass m if there is a compact subset K ⊂ M and a
diffeomorphism M \K ∼=x R3 \B for a closed ball B ⊂ R3 such that∑

|I|≤k

|x|2+|I| ∣∣∂I (gij(x)− (gm)ij(x))
∣∣ ≤ C

for some constant C > 0.

Remark. The assumptions on k for regularity Ck vary among different results that we discuss
below, but we omit the precise assumptions on Ck in their statements.

Theorem 4.2 (Huisken-Yau [35]). Let (M, g) be asymptotic to Schwarzschild of mass m > 0.
Then there exists a foliation of stable constant mean curvature surfaces in the exterior region
of M .
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The proof of Huisken and Yau consists of two parts. For the existence part, they use the
volume-preserving mean curvature flow to evolve a sufficiently round initial surface into a
constant mean curvature surface. Next, using the estimates obtained from the flow, they
analyze the eigenvalues of the stability operator and show that the constant mean curvature
surfaces are stable and form a smooth foliation. We sketch the method of volume-preserving
mean curvature flow in Section 4.1 and discuss the eigenvalue estimates in Section 5. Note
that a different approach by Ye [51] uses the inverse function theorem for the existence part,
which we discuss in Section 4.2

4.1. Volume-preserving mean curvature flow. The volume-preserving mean curvature
flow is a normalized mean curvature flow. It was first introduced by Huisken in the Euclidean
setting [33]. The flow is designed specifically to keep the enclosed volume the same and to
decrease the surface area under the flow.

Let (M, g) be asymptotic to Schwarzschild. Denote by Sr = {x : |x| = r} the coordinate
sphere in M . For each r sufficiently large, we define the volume-preserving mean curvature
flow Fr : S2 × [0, T )→M as follows, for t ≥ 0, p ∈ S2:

∂

∂t
Fr(p, t) = (H −H)ν(p, t)

Fr(S2, 0) = Sr,
(4.1)

where H = |Σt|−1
∫

Σt
H dµ, Σt = Fr(S2, t), and |Σt| is the area of Σt. By Proposition 3.1, the

flow keeps the signed volume between Σt and Sr the same. Furthermore, the first variation
formula implies

d

dt
|Σt| = −

∫
Σt

(H −H)2 dµ.

It implies that the area of Σt is strictly decreasing unless H is a constant. Therefore, if the
flow exists for all time, Σt converges to a constant mean curvature surface.

Note that the volume-preserving mean curvature flow (4.1) is a quasi-linear parabolic
system, so it has a unique short-time solution for a smooth initial surface. However, the flow
may develop singularities at a finite time. For surfaces in Euclidean space that are uniformly
convex, it is shown that the flow exists for all time and converges to a round sphere [33].
For surfaces in an initial data set that is asymptotic to Schwarzschild, we have the following
result.

Theorem 4.3 (Huisken-Yau [35]). Let (M, g) be asymptotic to Schwarzschild of m > 0.
There exist positive constants r0, C depending only on g, such that for all r ≥ r0, the volume-
preserving mean curvature flow (4.1) has a unique smooth solution for all time. Furthermore,
Σt converge exponentially fast to an embedded surface Σ of constant mean curvature H, and
for x ∈ Σ,

||x| − r| ≤ C∣∣∣∣H − 2

r
+

4m

r2

∣∣∣∣ ≤ Cr−2.

The main ingredient of the proof is to show that the solution Σt stays in a class of
sufficiently round surfaces, and hence it does not develop singularities along the flow.
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For a surface Σ in (M, g), denote by Å := A − 1
2
HgΣ the traceless part of the second

fundamental form A of Σ, where gΣ is the induced metric. Let r be large and B0, B1, B1 > 0.
Define the class Br(B0, B1, B2) of smooth closed surfaces of genus zero in (M, g) by

Br(B0, B1, B2) = {Σ ⊂M : for all x ∈ Σ, ||x| − r| ≤ B0, |Å| ≤ B1r
−3, |∇ΣÅ| ≤ B2r

−4}.

By carefully choosing the constants B0, B1, B2 (depending on the a priori estimates of |Å|
and |∇Å| along the flow), there exists r0 sufficiently large (depending on B0, B1, B2 and g)
such that for each r ≥ r0, the solution Σt to (4.1) remains in Br(B1, B2, B3). This then
implies long-time existence of the solutions. The proof is beyond the scope of this article, so
we refer the readers to the original paper [35, Section 3].

Here we explain the motivation behind the smallness assumptions on |Å| and |∇Å| in the

definition of Br(B0, B1, B2). Note that if |Å| = 0, then all the principal curvatures at each
point of the hypersurface are equal and hence the hypersurface is umbilic. It is known that
the only closed umbilic hypersurfaces in Euclidean space are round spheres. (We applied
this fact earlier in the proof of Theorem 3.4.) For surfaces that are almost umbilic, there are
several quantitative versions that measure how far the surfaces are from being round (see,
for example, [20]). Below we provide a simple version of the quantitative estimates.

We define the area radius for a closed surface Σ in (M, g) by

rΣ :=

√
|Σ|
4π
,

Proposition 4.4 (cf. [35, Proposition 2.1]). Let Σ be a closed surface in R3 of genus zero.
Let B1, B2 > 0 be real numbers. Suppose

|Å| ≤ B1r
−3
Σ , |∇Å| ≤ B2r

−4
Σ .

There exists an absolute constant C > 0 such that if rΣ > C(
√
B1 +

√
B2), then the principal

curvatures λ1, λ2 satisfy, for i = 1, 2,∣∣∣∣λi − H

2

∣∣∣∣ ≤ C(B1 +B2)r−3
Σ .

Proof. In the proof, C is assumed to be an absolute constant and may change from line to
line. As a consequence of the Codazzi equation [32, Lemma 2.2], we have

|∇A|2 ≥ 3

4
|∇H|2.

Together with the assumption on |∇Å|, this implies an upper bound on |∇H|:

|∇Å|2 = |∇A|2 − 1

2
|∇H|2 ≥ 1

4
|∇H|2.

Let x0 ∈ Σ such that H(x0) = H. By the mean value theorem and the above bound on
|∇H|, we have

|H(x)−H| ≤ sup
x∈Σ
|∇H(x)|d ≤ 2B2r

−4
Σ d,(4.2)
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where d is the intrinsic diameter of Σ. Note that d can be estimated in terms of the mean
curvature [48, Theorem 1.1] as follows:

d ≤ C

∫
Σ

|H| dµ ≤ C(|H|r2
Σ +B2r

−2
Σ d),

where we apply (4.2) in the last inequality. Choosing rΣ ≥
√

2CB2 yields that d ≤ 2C|H|r2
Σ.

Using (4.2) again, we have for all x ∈ Σ

|H(x)−H| ≤ CB2r
−2
Σ |H|.

By the Gauss-Bonnet theorem and the assumption on |Å|, we have

|H| ≤ |Σ|−
1
2

(∫
Σ

H2 dµ

) 1
2

≤ |Σ|−
1
2

(∫
Σ

2|Å|2 dµ+ 4

∫
Σ

K dµ

) 1
2

≤ Cr−1
Σ ,

provided rΣ ≥
√
B1. Thus we obtain

|H(x)−H| ≤ CB2r
−3
Σ .

By the assumption that |Å| ≤ B1r
−3
Σ , we conclude for i = 1, 2,∣∣∣∣λi − H

2

∣∣∣∣ ≤ C(B1 +B2)r−3
Σ .

�

4.2. Inverse Function Theorem. An alternative method to construct a constant mean
curvature surface is by graphically perturbing an initial surface whose mean curvature is
almost constant.

Let (M, g) be asymptotic to Schwarzschild of mass m. Let

pij(x) := gij(x)−
(

1 +
2m

|x|

)
δij.

For r sufficiently large, let Sr(a) be a coordinate sphere defined by Sr(a) = {x ∈ M :

|x − a| = r}. Denote ρi = xi−ai
r

. By direct computation [27, (5.1)], the mean curvature of
Sr(a) at x in Sr(a) is

HSr(a) =
2

r
− 4m

r2
+

6m(x− a) · a
r4

+
9m2

r3
+

1

2
pij,k(x)ρiρjρk + 2

pij(x)

r
ρiρj

− pij,i(x)ρj − pii(x)

r
+

1

2
pii,j(x)ρj +O(r−4(1 + |a|))

=:
2

r
− 4m

r2
+

6m(x− a) · a
r4

+
9m2

r3
+Gr(x, a).

(4.3)

Throughout this section, we use the Einstein summation convention and sum over repeated
indices, and a comma denotes a partial derivative. From (4.3), the mean curvature of the
coordinate sphere is almost constant, up to terms of order O(r−3). We show below that if
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m 6= 0, one can find a surface of constant mean curvature near Sr(a) for a suitable chosen
vector a (depending on r). Furthermore, the center a converges to the BORT center of mass
as r tending to infinity.

Theorem 4.5 (Ye [51], Huang [27]). Let (M, g) be asymptotic to Schwarzschild of mass
m 6= 0. There exist positive constants r0 and C, depending only on g, such that for each
r ≥ r0, there exists a surface Σr of constant mean curvature 2

r
− 4m

r2 , and Σr can be expressed
as a normal graph over the coordinate sphere

Σr = {x+ φ(x)νSr(x) : x ∈ Sr(CBORT)}

for some φ ∈ C2,α(Sr(CBORT)) which satisfies
∑
|I|≤2 r

|I||∂Iφ| +
∑
|I|=2 r

2+α[∂Iφ]α ≤ Cr−1,
where νSr is the outward unit normal vector on Sr with respect to g.

Sketch of Proof. In the following we suppress the subscript r in Σr when the context is clear.
Fix an asymptotically flat coordinate system in the exterior region of M . Let Σ be a graph
over the coordinate sphere: for φ ∈ C2,α(Sr(a)) suitably small,

Σ = {x+ φνSr : x ∈ Sr(a)}.
Fix r sufficiently large, which will be specified later. Denote byHr(a, φ) : R3×C2,α(Sr(a))→
C0,α(Sr(a)) the mean curvature operator that sends the function φ to the mean curvature of
the normal graph Σ in (M, g). By Taylor expansion in the φ-component,

Hr(a, φ) = Hr(a, 0) + dHr(a, 0)(φ) +

∫ 1

0

(dHr(a, sφ)− dHr(a, 0)) (φ) ds,(4.4)

where dHr is the first Fréchet derivative with respect to the second component. Specifically,
dHr(a, 0) is the stability operator on Sr(a) with respect to g:

dHr(a, 0) = −∆Sr(a) − (|A|2 + Ric(νSr , νSr)) =: LSr(a).

Observe that the term Hr(a, 0) in (4.4) is the mean curvature of coordinate sphere com-
puted as in (4.3). Thus, solving Hr(a, φ) = 2

r
− 4m

r2 for some (a, φ) is equivalent to solving

LSr(a)φ = −6m(x− a) · a
r4

− 9m2

r3
−Gr(x, a)−

∫ 1

0

(dHr(a, sφ)− dHr(a, 0)) (φ) ds.(4.5)

Since (M, g) is asymptotic to Schwarzschild, on the coordinate sphere Sr(a) we have

|A|2 =
2

r2
+O(r−3), Ric(νSr , νSr) = O(r−3),

provided that |a| is bounded by a constant independent of r. Hence we replace the stability
operator LSr(a) by the stability operator L0 := −∆0 − 2

r2 on the Euclidean round sphere,
where ∆0 is the Laplace operator on the Euclidean round sphere Sr(a). We then rewrite
(4.5) as a differential equation on the Euclidean round sphere:

L0φ = −6m(x− a) · a
r4

− 9m2

r3
−Gr(x, a) +O(r−1|∂2φ|+ r−2|∂φ|+ r−3|φ|)

=: Fr(x, a, φ, ∂φ, ∂
2φ).

(4.6)

A necessary condition for the above equation to have a solution is that Fr must be per-
pendicular to the cokernel of L0, which is spanned by {x1 − a1, x2 − a2, x3 − a3} restricted
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on Sr(a) (see Example 3.2). By the following lemma, the parameter a can be chosen to
accomplish this.

Lemma 4.6 (Huang [27, Lemma 5.1]). Let (M, g) be asymptotic to Schwarzschild of mass m.
There exists r0 sufficiently large such that for each r ≥ r0 and for for each i = 1, 2, 3∫

Sr(a)

(xi − ai)Gr(x, a) dµ0 = −8πm CiBORT +O(r−1),

where Gr(x, a) is the remainder term in (4.3) and dµ0 is the area measure of the Euclidean
round sphere.

Remark. The above lemma has been generalized to initial data sets with the Regge-Teitelboim
conditions. We prove it in Lemma 4.9 below.

By Lemma 4.6 and direct computation, we obtain∫
Sr(a)

Fr(x, a, φ, ∂φ, ∂
2φ)(xi − ai) dµ0 = −8πm(ai − CiBORT) +O(r−1‖φ‖C2), i = 1, 2, 3.

If m 6= 0, we choose a = CBORT +O(r−1‖φ‖C2) such that the above integral vanishes. Thus,
Fr(x, a, φ, ∂φ, ∂

2φ) belongs to the range of L0.
Next we use the Schauder Fixed Point Theorem to find a solution to (4.6).

Theorem 4.7 (Schauder Fixed Point Theorem, e.g. [26, Chapter 11]). Let B be a compact
convex subset in a Banach space, and let T : B → B be a continuous map. Then T has a
fixed point, that is, Tx = x for some x ∈ B.

Define the convex subset B ⊂ C2(Sr(a)) by B := {u ∈ C2(Sr(a)) : ‖u‖C2,α ≤ 1}. Note
that B is compact by the Arzela-Ascoli Theorem. Given w ∈ C2(Sr(a)), we have shown that
there exists a vector a such that Fr(x, a, w, ∂w, ∂

2w) belongs to the range of L0. It implies
that there exists a solution v ∈ C2,α(Sr(a)) such that

L0v = Fr(x, a, w, ∂w, ∂
2w).(4.7)

Define the map T : B → C2(Sr(a)) by T (w) = v, where v is the unique solution to (4.7)
such that v is perpendicular to the kernel of L0. One can verify that T is continuous. By
the Schauder estimates for solutions perpendicular to the kernel, we obtain

‖v‖C2,α(Sr(a)) ≤ C‖Fr(x, a, w, ∂w, ∂2w)‖C0,α(Sr(a)) ≤ Cr−1‖w‖C2,α(Sr(a)),

where the constant C depends only on the metric g. Choose r such that r ≥ C. It follows
that T maps B into itself. Thus, by Schauder Fixed Point Theorem, T has a fixed point φ.
Then φ solves the desired equation

Hr(a, φ) =
2

r
− 4m

r2
,

where a = CBORT +O(r−1‖φ‖C2). �

Let {Σr} be the family of constant mean curvature surfaces constructed in the previous
theorem, and let {x1, x2, x3} be the coordinate functions. The geometric center of mass of
(M, g) proposed by Huisken-Yau is defined as follows, for i = 1, 2, 3:

CiGeom = lim
r→∞

∫
Σr
xi dµ0∫

Σr
dµ0

,(4.8)
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where dµ0 is the Euclidean area measure.

Corollary 4.8 (Huang [27, Theorem 2]). Let (M, g) be asymptotic to Schwarzschild of m 6=
0. Then these notions of the center of mass coincide

CBORT = CGeom.

We remark that the above corollary has been generalized to the class of asymptotically
flat initial data sets that satisfy the Regge-Teitelboim conditions [28].

4.3. Another notion of center of mass. In this section we show the following identity
between the mean curvature of the coordinate spheres and the BORT center of mass.

Lemma 4.9 (Huang [28]). Let (M, g, k) be an asymptotically flat initial data set satisfying
the Regge-Teitelboim conditions. Given a ∈ R3, denote by Sr(a) = {x ∈M : |x− a| = r} the
coordinate sphere centered at a of radius r. Then,

∫
Sr(a)

(xα − aα)

(
H − 2

r

)
dµ0 = 8πE(aα − CαBORT) +O(r1−2q), α = 1, 2, 3,(4.9)

where H is the mean curvature of Sr(a) with respect to g and dµ0 is the area measure of the
Euclidean round sphere Sr(a).

Proof. Denote by hij = gij − δij and ρi = xi−ai
r

. Throughout the proof, we use the Einstein
summation convention and sum over repeated indices. By direct computation [28, Lemma
2.1], we find for x ∈ Sr(a),

H(x) =
2

r
+

1

2
hij,k(x)ρiρjρk + 2hij(x)

ρiρj

r
− hij,i(x)ρj +

1

2
hii,j(x)ρj − hii(x)

r
+ E0(x),

where E0(x) = O(r−1−2q) and E0(x) − E0(−x) = O(r−2−2q). We state the following key
identity

∫
Sr(a)

(xα − aα)
1

2
hij,k(x)ρiρjρk dµ0

=

∫
Sr(a)

(xα − aα)

(
1

2
hij,i(x)ρj − 2hij(x)

ρiρj

r

)
dµ0 +

∫
Sr(a)

1

2

(
hii(x)ρα + hiα(x)ρi

)
dµ0.

(4.10)
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Assuming the above identity, we obtain∫
Sr(a)

(xα − aα)

(
H(x)− 2

r

)
dµ0

= −1

2

∫
Sr(a)

(xα − aα)(hij,i − hii,j)ρj dµ0 +
1

2

∫
Sr(a)

(hiαρ
i − hiiρα) dµ0 +O(r1−2q)

= −1

2

∫
Sr(a)

[
xα(gij,i − gii,j)ρj − (giαρ

i − giiρα)
]
dµ0

+
1

2
aα
∫
Sr(a)

(gij,i − gii,j)ρj dµ0 +O(r1−2q)

= −1

2

∫
Sr(a)

[
xα(gij,i − gii,j)

xj

r
−
(
giα

xi

r
− gii

xα

r

)]
dµ0

+
1

2
aα
∫
Sr(a)

(gij,i − gii,j)
xj

r
dµ0 +O(r1−2q),

where we use the Regge-Teitelboim conditions in all the equalities. The desired identity
follows from the definitions of the ADM energy and the BORT center of mass.

It remains to prove (4.10). Our original proof uses a density theorem (Theorem 6.2) which
states that initial data sets with harmonic asymptotics are dense among initial data sets with
the Regge-Teitelboim conditions in a suitable topology such that the ADM energy and the
BORT center of mass vary continuously. It is then straightforward to verify that (4.10)
holds for initial data sets with harmonic asymptotics. Eichmair and Metzger later gave the
following proof [24]. For each α, denote the vector field X(α) = (xα−aα)hijρ

i∂j. By the first
variation formula,∫

Sr(a)

div0X(α) dµ0 =

∫
Sr(a)

H0〈X(α), ρ〉 dµ0 =

∫
Sr(a)

2(xα − aα)
hijρ

iρj

r
dµ0,

where div0 is the divergence operator on the Euclidean round sphere Sr(a). Then (4.10)
follows from the direct computation:

div0X(α) =
(
δij − ρiρj

)
∂iX

j
(α)

= hiαρ
i + (xα − aα)

(
hii
r
− 2

hij
r
ρiρj + hij,jρ

i − hij,kρiρjρk
)
.

�

The above lemma gives us a new notion of center of mass that involves the mean curvature:
for i = 1, 2, 3,

CαH = lim
r→∞
− 1

8πE

∫
Sr(0)

xαH dµ0,

where H is the mean curvature of the coordinate sphere Sr(0) with respect to g, and dµ0 is
the area measure of a Euclidean round sphere.

Corollary 4.10. Let (M, g, k) be an asymptotically flat initial data set satisfying the Regge-
Teitelboim conditions. Then these notions of center of mass coincide

CH = CBORT.
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5. Stability and Foliations

After having obtained a family of constant mean curvature surfaces in Section 4, we now
discuss their properties in this section. We continue to restrict our discussions to three-
dimensional asymptotically flat initial data sets throughout this section, unless otherwise
specified.

5.1. Analyzing the stability operator. We have shown in Section 4 the existence of
a family of constant mean curvature surfaces in an initial data set (M, g) asymptotic to
Schwarzschild. From the construction, each member of the family of constant mean curvature
surfaces {Σr} can be expressed as a normal graph over the corresponding coordinate sphere
at a common center a as below:

Σr = {x+ φνSr : x ∈ Sr(a)},(?)

where φ ∈ C2,α(Sr(a)) depends on r and
∑
|I|≤2 r

|I||∂Iφ| +
∑
|I|=2 r

2+α[∂Iφ]α ≤ Cr−1. In
particular, each Σr satisfies the following properties:

H =
2

r
− 4m

r2

|A|2 + Ric(ν, ν) =
2

r2
− 10m

r3
+O(r−4)

|Σr| = 4πr2 +O(r)

K ≥ 1

r2
− 2m

r3
− Cr−4,

(??)

where K is the Gauss curvature of Σr and ν is the unit normal to Σr, and where f = O(rq)
denotes a function satisfying |f | ≤ Crq for all r, where C > 0 depends only on g.

Below we show that for a family of surfaces satisfying the properties (??), there exists r0

sufficiently large such that for each r ≥ r0, the constant mean curvature surface Σr is stable.
We first recall a classical estimate on the first nonzero eigenvalue of the Laplace operator.

Lemma 5.1 (Lichnerowicz). Let Σ be an n-dimensional closed Riemannian manifold. Let
λLap be the first nonzero eigenvalue of the Laplace operator −∆. Suppose that for some
constant κ > 0 the Ricci curvature satisfies

Ric(ξ, ξ) ≥ (n− 1)κ|ξ|2,

for all ξ ∈ TM . Then λLap ≥ nκ.

Remark. The above equality holds if and only if Σ is isometric to the n-sphere of constant
sectional curvature κ [41].

Proof. Recall the Bochner-Lichnerowicz identity:

1

2
∆|∇u|2 = |Hess(u)|2 + 〈∇u,∇∆u〉+ Ric(∇u,∇u).

Let u be an eigenfunction corresponding to λLap such that −∆u = λLapu. Integrating the
identities over Σ and using |Hess(u)|2 ≥ (∆u)2/n, we obtain

∫
Σ
|∇u|2 dµ = λLap

∫
Σ
u2 dµ as
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well as

0 =
1

2

∫
Σ

∆|∇u|2 dµ

≥
∫

Σ

[
(∆u)2

n
+ 〈∇u,∇∆u〉+ Ric(∇u,∇u)

]
dµ

≥
(
λ2

Lap

n
+ ((n− 1)κ− λLap)λLap

)∫
Σ

u2 dµ.

Since λLap > 0, the desired inequality follows.
�

Theorem 5.2 (Huisken-Yau [35]). Let (M, g) be asymptotic to Schwarzschild of mass m.
Suppose {Σr} is a family of surfaces satisfying the properties (??). Then there exists C > 0
(depending only on g) such that for each Σr

µ0 ≥
6m

r3
− Cr−4,

where µ0 is defined by (3.3). As a consequence, if m > 0, there exists r0 sufficiently large
such that for each r ≥ r0, we have µ0 > 0 and hence Σr is stable.

Proof. Applying Lemma 5.1 to a two-dimensional surface Σ yields that λLap ≥ 2κ where κ
is the minimum of the Gauss curvature of Σ. Then on Σr we have by (??)

λLap ≥
2

r2
− 4m

r3
− Cr−4.

The proposition follows from the definition of µ0 and the properties (??). �

5.2. Invertibility. To show that the stability operator is invertible, we analyze the eigen-
values of the operator.

Theorem 5.3 (cf. Huisken-Yau [35, Theorem 4.1]). Let (M, g) be asymptotic to Schwarzschild
of mass m. Suppose {Σr} is a family of surfaces satisfying the properties (??). Let λ0 be
the lowest eigenvalue of the stability operator LΣr on Σr, and let λ1 be the next eigenvalue.
Then there exists C > 0 (depending only on g) such that

λ0 = − 2

r2
+

10m

r3
+O(r−4),

λ1 ≥
6m

r3
− Cr−4.

As a consequence, if m > 0, there exists r0 sufficiently large such that for each r ≥ r0, the
stability operator LΣr : C2,α(Σr)→ C0,α(Σr) is a linear isomorphism.

Proof. Let w be an eigenfunction for λ0 so that

LΣrw = −∆w − (|A|2 + Ric(ν, ν))w = λ0w.(5.1)
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Multiplying the above identity by w and integrating it over Σr, we have

λ0

∫
Σr

w2 dµ =

∫
Σr

[
|∇w|2 − (|A|2 + Ric(ν, ν))w2

]
dµ

≥
(
− 2

r2
+

10m

r3
− Cr−4

)∫
Σr

w2 dµ,

where we use |∇w| ≥ 0 and apply the properties (??) to the term involving (|A|2 + Ric(ν, ν)).
On the other hand, using the constant function in the Rayleigh quotient yields

λ0 ≤ −
2

r2
+

10m

r3
+ Cr−4.

Thus we have shown that

λ0 = − 2

r2
+

10m

r3
+O(r−4).(5.2)

Moreover, the function w is almost constant in the L2 sense. Let w = |Σr|−1
∫

Σr
w dµ denote

the mean value of w. Multiply (5.1) by (w − w) and integrate to obtain∫
Σr

|∇(w − w)|2 dµ =

∫
Σr

(λ0 + |A|2 + Ric(ν, ν))(w − w)2 dµ

+

∫
Σr

(|A|2 + Ric(ν, ν))w(w − w) dµ.

Using the estimates of λLap, λ0 and the properties (??), we see(
2

r2
− Cr−3

)∫
Σr

|w − w|2 dµ ≤ Cr−4

∫
Σr

(
|w − w|2 + |w||w − w|

)
dµ.

From the elementary inequality |w||w − w| ≤ εr2|w − w|2 + C(ε)r−2w2, we obtain

‖w − w‖L2(Σr) ≤ Cr−2|w||Σr|
1
2 .(5.3)

In particular, if w is not constant, then w 6= 0.
Let u be an eigenfunction with respect to λ1. Then

LΣr(u− u) = λ1(u− u) + (λ1 + |A|2 + Ric(ν, ν))u.

We multiply the above identity by (u− u) and integrate over Σr. Since u− u has zero mean
value, we apply Theorem 5.2 and obtain(

6m

r3
− Cr−4

)∫
Σr

|u− u|2 dµ ≤
∫

Σr

(u− u)LΣr(u− u) dµ

= λ1

∫
Σr

(u− u)2 dµ+

∫
Σr

(λ1 + |A|2 + Ric(ν, ν))u(u− u) dµ

≤ λ1

∫
Σr

(u− u)2 dµ+ Cr−4

∫
Σr

|u||u− u| dµ

≤ λ1

∫
Σr

(u− u)2 dµ+ Cr−4|u||Σr|1/2‖u− u‖L2 .
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To estimate the last term on the right hand side, we note that

0 =

∫
Σr

uw dµ =

∫
Σr

(u− u)(w − w) dµ+

∫
Σr

uw dµ.

By the Hölder inequality and the L2 bound of (w − w) in (5.3),

|u||Σr| =
∣∣∣∣∫

Σr

u dµ

∣∣∣∣ ≤ |w|−1‖u− u‖L2‖w − w‖L2 ≤ Cr−2|Σr|1/2‖u− u‖L2 .

Putting the above inequalities together, we have(
6m

r3
− Cr−4

)
‖u− u‖2

L2 ≤ λ1‖u− u‖2
L2 + Cr−6‖u− u‖2

L2 .

It implies that

λ1 ≥
6m

r3
− Cr−4.

This implies that if m > 0, for r sufficiently large, LΣr : C2,α(Σr) → C0,α(Σr) is injective.
By Fredholm alternative, LΣr is surjective. Hence, it is a linear isomorphism. �

5.3. Foliations. Let (M, g) be asymptotic to Schwarzschild of m > 0. Let Σr be a surface
in the family {Σr} that satisfy the properties (?) and (??). As before, we define the mean
curvature operator H : C2,α(Σr) → C0,α(Σr) to be the differential operator that maps φ to
the mean curvature of the normal graph {x + νφ : x ∈ Σr}. Theorem 5.3 says that the
linearized operator dH = LΣr is a linear isomorphism for r sufficiently large. Recall the
Inverse Function Theorem:

Theorem 5.4 (Inverse Function Theorem). Let E and F be Banach spaces, and let U be
an open subset of E. Suppose f : U ⊂ E → F is of class Ck, k ≥ 1. Let x0 ∈ U . Suppose
that Df(x0) is a linear isomorphism. Then f is a Ck diffeomorphism of some neighborhood
of x0 onto some neighborhood of f(x0).

Fix r such that dH is a linear isomorphism on the surface Σr of constant mean curvature h0.
The Inverse Function Theorem implies that there exists ε > 0 such that for each constant h ∈
(h0− ε, h0 + ε), there is the unique normal graph over Σ that has constant mean curvature h.
This also implies that we can define a differentiable deformation F : Σr×(h0−ε, h0 +ε)→M
by sending (Σr, h) to the unique normal graph over Σr that has constant mean curvature h.
Let H(h) = h denote the mean curvature of the normal graph F (Σr, h). Since each surface
has constant mean curvature, only the normal component ∂

∂h
F contributes to the evolution

of H(h). Thus,

1 =
d

dh

∣∣∣∣
h=h0

H(h) = LΣrφ,(5.4)

where φ = g( ∂
∂h

∣∣
h=h0

F, ν). In the following we show that φ has a sign, from which it follows

that members of the family of constant mean curvature surfaces do not intersect, and in fact
form a foliation.

We recall below a standard application of Moser iteration and include the proof since our
setting is slightly different from [26, Theorem 8.17].
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Proposition 5.5. Let (Σ, g) be a two-dimensional closed Riemannian manifold. Let v be a
C2 solution to

−∆Σv −Qv = f,(5.5)

where Q, f ∈ L∞(Σ) and Q ≥ 0. Then, for any p0 ≥ 2,

sup
Σ
|v| ≤ C0(‖v‖Lp0 (Σ) + k),

where k = ‖f‖L∞ and C0 depends on p0,Σ, g, ‖Q‖L∞.

Proof. Let v+ := maxΣ{v, 0}. Note v+ ∈ W 1,2(Σ) and

∇v+ =

{
∇v if v > 0
0 if v ≤ 0

.

Let w = v+ + k, where k is defined as in the proposition. For any real number p ≥ 1, we
multiply the differential equation (5.5) by wp and integrate over Σ:∫

Σ

|∇(w
p+1

2 )|2 dµ =
(p+ 1)2

4p

∫
Σ

(Qvwp + fwp) dµ

≤ p

∫
Σ

(Q+ 1)wp+1 dµ

≤ pmax
Σ

(Q+ 1)

∫
Σ

wp+1 dµ,

(5.6)

where in the first inequality we use the assumption that Q ≥ 0. The above computation

establishes an upper bound of the W 1,2-norm of w
p+1

2 by purely the L2-norm of w
p+1

2 . To
begin the iteration procedure, we need to relate the higher order Lq-norm to the W 1,2-
norm. For manifolds of higher dimensions, the standard procedure is to apply the Gagliardo-
Nirenberg-Sobolev inequality: for 1 ≤ p < n,

‖u‖Lp∗ ≤ C0‖u‖W 1,p ,

where p∗ = np
n−p and n is the dimension of the manifold. However, in our case n = 2 and

p = 2 is the borderline case of the Gagliardo-Nirenberg-Sobolev inequality, so we use another
inequality specifically for a two-dimensional manifold Σ: for any 1 ≤ q <∞,

‖u‖Lq(Σ) ≤ C0
√
q‖u‖W 1,2(Σ),(5.7)

where C0 depends on (Σ, g).

Substitute u in (5.7) with w
p+1

2 , and let q = 2κ > 2 be a fixed real number. Together with
(5.6) and enlarging C0 if necessary, we obtain, for any 1 ≤ p <∞,

‖w‖L(p+1)κ ≤ C
1
p+1

0 (p+ 1)
1
p+1‖w‖Lp+1 ,(5.8)

where C0 depends on κ,Σ, g, ‖Q‖L∞ . Now we define a sequence of numbers

p0 = p+ 1, pi = p(i−1)κ = (p+ 1)κi, i = 1, 2, . . . .

The estimate (5.8) implies that

‖w‖Lp(i+1) ≤ C

∑i
j=0

1
pj

0

i∏
j=0

p
1
pj

j ‖w‖Lp0 .
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Note that as i tending to infinity ‖w‖Lpi+1 (Σ) converges to ‖w‖L∞ and the coefficient on the
right hand side converges because κ > 1. This implies that, for κ fixed and for any p0 ≥ 2,

v ≤ sup
Σ
w ≤ C0‖w‖Lp0 ≤ C0

(
‖v+‖Lp0 + k

)
≤ C0 (‖v‖Lp0 + k) ,

where C0 depends on p0,Σ, ‖Q‖L∞ . Substituting v with −v yields

−v ≤ C0 (‖v‖Lp0 + k) .

The desired estimate follows. �

We now use a scaling argument to factor out the dependence of the constant C0 in Propo-
sition 5.5 from the family of surfaces {Σr}.

Proposition 5.6. Let (M, g) be asymptotic to Schwarzschild of mass m. Suppose {Σr} is a
family of surfaces satisfying the property (?). For each r, let v be a C2 solution to

−∆Σrv −Qv = f,

where Q, f ∈ L∞(Σr) and Q ≥ 0. Then, for any p0 ≥ 2,

sup
Σr

|v| ≤ C0(r
− 2
p0 ‖v‖Lp0 (Σr) + k),

where k = ‖f‖L∞ and C0 depends on g, p0, ‖Q‖L∞ (but independent of r).

Proof. The property (?) gives a family of smooth diffeomeomorphisms Fr : S2 → Σr such
that |dFr− rId| = O2(1), where Id is the identification map from TS2 to TΣr. It implies the
pull back metric satisfies

‖F ∗r gΣr − gS2‖C2 ≤ C,

where C depends only on g. Considering the pull-back of the differential equations for v ◦Fr
and applying Proposition 5.5 on the fixed geometry (S2, gS2), we obtain

sup
S2

|v ◦ Fr| ≤ C0(‖v ◦ Fr‖Lp0 (S2) + k),

where C0 depends on g, p0, k = ‖f ◦ Fr‖L∞(S2), and Q. Using the area formula for the
Lp0-norm, we have the desired estimate. �

Theorem 5.7. Let (M, g) be asymptotic to Schwarzschild of mass m > 0. Suppose {Σr} is
a family of surfaces satisfying the properties (?) and (??). Let u ∈ C2,α(Σr) satisfy

LΣru := −∆Σru− (|A|2 + Ric(ν, ν))u = c

for some constant c. Then there exists r0 sufficiently large such that for each r ≥ r0,

sup
Σr

|u− u| ≤ Cr−1|u|,

where C depends only on g. As a consequence, for r0 sufficiently large, the solution u is
either positive or negative for each r ≥ r0.
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Proof. Note that (u − u) satisfies the equation LΣr(u − u) = c + (|A|2 + Ric(ν, ν))u. By
Theorem 5.2 and the estimate on |A|2 + Ric(ν, ν) from (??), we obtain(

6m

r3
− Cr−4

)∫
Σr

|u− u|2 dµ ≤
∫

Σr

(u− u)L(u− u) dµ

=

∫
Σr

(|A|2 + Ric(ν, ν))u(u− u) dµ

≤ Cr−4

∫
Σr

|u||u− u| dµ

≤ Cr−4

(∫
Σr

|u− u|2 dµ
) 1

2
(∫

Σr

|u|2 dµ
) 1

2

.

This implies

‖u− u‖L2(Σr) ≤ Cm−1r−1|u||Σr|
1
2 .

By Proposition 5.6,

sup
Σr

|u− u| ≤ C(r−1‖u− u‖L2(Σr) + k),

where k = maxΣr |c+ (|A|2 + Ric(ν, ν))u| and C depends on supΣr(|A|2 + Ric(ν, ν)). To
estimate the constant c, we integrate LΣru = c over Σr and obtain

|Σr||c| ≤
∣∣∣∣∫

Σr

(|A|2 + Ric(ν, ν))(u− u) dµ

∣∣∣∣+

∣∣∣∣∫
Σr

(|A|2 + Ric(ν, ν))u dµ

∣∣∣∣
≤ C(r−4‖u− u‖L2|Σr|

1
2 + r−4|Σr||u|).

By the above estimates and the properties (??), we have

sup
Σr

|u− u| ≤ Cr−1|u|.

�

Applying Theorem 5.7 to (5.4), we obtain the the following result.

Corollary 5.8. Let (M, g) be asymptotic to Schwarzschild of mass m > 0. Suppose {Σr}
is a family of surfaces satisfying the properties (?) and (??). Then there exists r0 > 0 such
that the family of surfaces {Σr} for r ≥ r0 form a foliation.

6. Density Theorems

6.1. Weighted Sobolev spaces. We introduce a topology on the space of asymptotically
flat initial data sets using the following weighted norm. Let B be a ball in Rn centered at
the origin. For k ∈ {0, 1, . . . }, p ≥ 0, and q ∈ R, we define the weighted Sobolev space

W k,p
−q (Rn \B) to be the set of functions f ∈ W k,p

−q (Rn \B) with

‖f‖Wk,p
−q (Rn\B) :=

∫
Rn\B

∑
|I|≤k

(∣∣∂If(x)
∣∣|x||I|+q)p |x|−n dx

 1
p

<∞.
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When p =∞,

‖f‖Wk,∞
−q (Rn\B) :=

∑
|I|≤k

ess sup
Rn\B
|∂If ||x||I|+q.

Suppose M is a smooth manifold such that there is a compact set K ⊂ M and a diffeo-
morphism M \ K ∼= Rn \ B. Choose an atlas for M that consists of the diffeomorphism

M \K ∼= Rn \B and finitely many precompact charts on K. We define the W k,p
−q (M) norm

on M by summing over the W k,p
−q norm on the noncompact chart and the W k,p norm on the

precompact charts. The definition extends to the tensor bundles of M by considering the
components with respect to these charts, and can also easily extend to an asymptotically
flat manifold with a finite number of ends. We sometimes write W k,p

−q for W k,p
−q (M).

It is known that the ADM energy and linear momentum are continuous functions with
respect to the appropriate weighted Sobolev topology.

Theorem 6.1. Let p > n ≥ 3, q ∈
(
n−2

2
, n− 2

)
, q0 > 0. Let (g, k) and (ḡ, k̄) be C2

loc × C1
loc

asymptotically flat initial data sets such that

(g − g0, k), (ḡ − g0, k̄) ∈ W 2,p
−q ×W

1,p
−1−q,

where g0 is a smooth symmetric (0, 2) tensor that coincides with gE on M \K, and such that

µ, J, µ̄, J̄ ∈ W 0,p
−n−q0 .

Let ε > 0. There exists δ > 0 such that if

‖g − ḡ‖W 2,p
−q
≤ δ and ‖k − k̄‖W 1,p

−1−q
≤ δ,

then

|E − Ē| < ε and |P − P̄ | < ε.

The proof of this fact goes back to [45, p. 50] for E only and to [18, p. 198] in the vacuum
case. The proof of the general case can be found in [30, Proposition 2.4] and [21, Proposition
19].

On the other hand, the BORT center of mass and the ADM angular momentum may not
be defined in general for asymptotically flat initial data sets since the integrals (1.1) and
(1.2) may diverge [28, 12, 10, 11]. In fact, the BORT center of mass and the ADM angu-
lar momentum are discontinuous with respect to above topology (see Theorem 6.7 below).
Nevertheless, if we consider a topology that incorporates the Regge-Teitelboim conditions,
we have an analogous continuity result for the center of mass and angular momentum. In
the following we denote f odd(x) = (f(x)− f(−x))/2 and f even(x) = (f(x) + f(−x))/2 with
respect to an asymptotically flat coordinate chart.

Theorem 6.2 (cf. Huang [30, Proposition 2.4], [27, Theorem 2.2]). Let p > n ≥ 3, q ∈(
n−2

2
, n− 2

)
. Let (g, k), (ḡ, k̄), (µ, J), (µ̄, J̄) satisfy the assumptions in Theorem 6.1. Suppose

they also satisfy

(godd
ij , keven

ij ), (ḡodd
ij , k̄even

ij ) ∈ W 2,p
−1−q(M \K)×W 1,p

−2−q(M \K)

and

µodd, Jodd
i , µ̄odd, J̄odd

i ∈ W 0,p
−n−q0−1(M \K).
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Let ε > 0. There exists δ > 0 such that if

‖godd − ḡodd‖W 2,p
−1−q(M\K) ≤ δ and ‖keven − k̄even‖W 1,p

−2−q(M\K) ≤ δ

then

|CBORT − CBORT| < ε and |J − J | < ε.

6.2. Scalar curvature equation. We discuss a density result for the scalar curvature equa-
tion due to Schoen and Yau. The density argument is used in the proof of the Riemannian
positive mass theorem and enables them to reduce the case of the general asymptotically
flat metrics to the case that the metrics are scalar flat and conformally flat at infinity. In
what follows, we consider an asymptotically flat manifold M of dimension n ≥ 3.

Theorem 6.3 (Schoen-Yau [45]). Let (M, g) be an n-dimensional asymptotically flat initial
data set with nonnegative scalar curvature and the ADM mass m. Given ε > 0, there exists
an asymptotically flat metric g with zero scalar curvature such that, outside a compact set
of M , the metric has the form

gij = u
4

n−2 δij

with u = 1 + m
2
r2−n +O(r1−n), where m is the ADM mass of g and

m ≤ m+ ε.

Lemma 6.4 (Schoen-Yau [44, Lemma 3.3]). Let (M, g) be an n-dimensional asymptotically
flat initial data set with the ADM mass m. Suppose the scalar curvature R(g) ≥ 0 is positive
somewhere, and R(g) = O(|x|−3−q0) for some q0 > 1. Then there exist constant A < 0 and

a unique metric g = u
4

n−2 g with zero scalar curvature such that

u = 1 +
A

2
r2−n +O(r1−n).

Furthermore, the ADM mass m of ḡ satisfies m = m+ A < m.

Proof. Let g = u
4

n−2 g. The scalar curvatures of g and ḡ are related by

R(g) = u−
n+2
n−2

(
R(g)u− 4(n− 1)

n− 2
∆gu

)
.

Denote the conformal Laplace operator by L = ∆g− n−2
4(n−1)

R(g). Let p > n, q ∈
(
n−2

2
, n− 2

)
.

By [4, Proposition 1.14], L : W 2,p
−q → W 0,p

−2−q is a Fredholm operator of index zero. To find a

solution to the inhomogeneous equation Lv = f for f ∈ W 0,p
−2−q, it suffices to prove that L

has a trivial kernel by the Fredholm alternative. Let v ∈ W 2,p
−q satisfy Lv = 0. Multiplying

the equation Lv = 0 by v and applying the divergence theorem, we have

0 ≤
∫
M

|∇v|2 dσ = − n− 2

4(n− 1)

∫
M

R(g)v2 dσ + lim
r→∞

∫
|x|=r

v
∂v

∂ν
dµ

= − n− 2

4(n− 1)

∫
M

R(g)v2 dσ ≤ 0,

where we use the fall-off rates of v, ∂v to compute the boundary term. We conclude that
v ≡ 0. Therefore there is a unique solution to Lv = n−2

4(n−1)
R(g). Let u = v + 1. Then

u satisfies Lu = 0. Note that u > 0 everywhere by the strong maximum principle. Then
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g = u
4

n−2 g is the desired metric. The asymptotic expansion of u follows from [4, Theorem
1.17].

To show that A < 0, we integrate Lu = 0 over a large ball and apply the divergence
theorem:

0 < lim
r→∞

n− 2

4(n− 1)

∫
|x|≤r

R(g)u dσ = lim
r→∞

∫
|x|=r

∂u

∂ν
dµ

= lim
r→∞

∫
|x|=r
−(n− 2)A

2
r1−n dµ

= −n− 2

2
ωn−1A.

�

Proof of Theorem 6.3. By Lemma 6.4, we may assume without loss of generality that g has
zero scalar curvature. For λ ≥ 1 large, we define the cut-off metric

ĝλ := χλg + (1− χλ)gE,
where χλ(x) = χ(x/λ) and χ is a smooth cut-off function on Rn that is 1 on {|x| ≤ 1} and 0
on {|x| ≥ 2}. Note that the cut-off metric has zero scalar curvature everywhere except the
interpolating region λ ≤ |x| ≤ 2λ and R(ĝλ) = O(λ−n) there. We would like to find a metric

ḡ = u
4

n−2 ĝλ with zero scalar curvature in the conformal class of ĝλ. By the transformation
formula of the scalar curvature, it suffices to find a positive function u that tends to 1 at
infinity and satisfies

∆ĝλu−
n− 2

4(n− 1)
R(ĝλ)u = 0.

Note that R(ĝλ) may not be nonnegative everywhere, so the proof of Lemma 6.4 cannot
be applied. The approach of Schoen and Yau relies on a Sobolev inequality and requires
‖R(ĝλ)

−‖
L
n
2 (M)

sufficiently small, which is achieved by choosing λ sufficiently large. We refer

the details to [44, Lemma 3.2].
The last statement that m ≤ m + ε follows from the continuity of the ADM mass by

Theorem 6.1. �

6.3. Einstein constraint equations. Let (M, g, k) be an initial data set. Define the mo-
mentum tensor

π = k − (trgk)g.

It is often convenient to express initial data in terms of π rather than k. We will refer to
(M, g, π) as an initial data set in this section and define the constraint map

Φ(g, π) = (2µ, J) =
(
R(g)− |π|2g + 1

n−1
(trgπ)2, divgπ

)
.

We say that (M, g, π) has harmonic asymptotics if there exist a smooth function u and
a smooth vector field X such that u → 1, X → 0 at infinity and, outside a compact set of
M ,

g = u
4

n−2 gE

π = u
2

n−2 (LgEX),
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where the operator Lg is defined by LgX = LXg − divg(X)g and LXg is the Lie derivative.
Throughout this section, we denote by g0 a smooth symmetric (0, 2) tensor on M that
coincides with gE on M \K.

The term “harmonic” follows from the following proposition that the leading order terms
of the function u and the vector field X are harmonic.

Proposition 6.5 (Corvino-Schoen [18], see also [21, Proposition 24]). Let p > n, q ∈
(n−2

2
, n − 2), q0 > 1 (rather than just q0 > 0). Suppose that (Mn, g, π) is an asymptotically

flat initial data set that satisfies

(g − g0, π) ∈ W 2,p
−q (M)×W 1,p

−1−q(M),

and

(µ, J) ∈ W 0,p
−n−q0 .

such that (g, π) has harmonic asymptotics:

g = u
4

n−2 gE, π = u
2

n−2LgEX,(6.1)

outside a compact set, for some (u− 1, X) ∈ W 2,p
−q . Then (u,X) admits an expansion

u(x) = 1 + a|x|2−n +O(|x|1−n) and Xi(x) = bi|x|2−n +O(|x|1−n),

where X = X i ∂
∂xi

.

A generalization of Theorem 6.3 to the full constraint equations is the following result,
that initial data sets with harmonic asymptotics are dense among general asymptotically flat
initial data set.

Theorem 6.6 (Corvino-Schoen [18, Theorem 1]). Let p > n, q ∈ (n−2
2
, n − 2). Let (g, π)

and (ḡ, π̄) be vacuum asymptotically flat initial data sets

(g − g0, π) ∈ W 2,p
−q ×W

1,p
−1−q.

Let ε > 0. There exists a vacuum asymptotically flat initial data set (ḡ, π̄) with harmonic
asymptotics such that

‖g − ḡ‖W 2,p
−q
≤ ε, ‖π − π̄‖W 1,p

−1−q
≤ ε

and

|E − Ē| < ε, |P − P̄ | < ε.

Proof. For λ ≥ 1 large define the cut-off initial data

(ĝλ)ij = χλgij + (1− χλ)δij
π̂λ = χλπ,

where χλ(x) = χ(x/λ) and χ is a smooth cut-off function on Rn such that χ is 1 on {|x| ≤ 1}
and 0 on {|x| ≥ 2}. In the following, we suppress the subscript λ when the context is clear.

The system of the Einstein constraint equations forms an underdetermined system: the
number of unknowns is greater than the number of the equations that determine them.
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One reason to introduce a function u and a vector field X in the expression of harmonic
asymptotics is to obtain a well-determined elliptic system. Let

g̃ = u
4

n−2 ĝ

π̃ = u
2

n−2 (π̂ + LĝX).

Now we would like to find u tending to 1 and X tending to 0 at infinity such that (g̃, π̃)
satisfies the vacuum constraints.

Define T(ĝ,π̂) : (W 2,p
−q + 1)×W 2,p

−q → W 0,p
−2−q to be the constraint map T(ĝ,π̂)(u,X) = Φ(g̃, π̃).

The map T(g,π) : (W 2,p
−q + 1) ×W 2,p

−q → W 0,p
−2−q is defined analogously. Note that T(ĝ,π̂) and

T(g,π) are smooth maps. The linearization of T(ĝ,π̂) at (1, 0) is

DT(ĝ,π̂)|(1,0)(v, Z)

=

(
− 4(n− 1)

n− 2
∆ĝv −

4(n− 1)

n− 2

[
Rĝ − |π̂|2ĝ + 1

n−1
(trĝπ̂)2

]
v − 4Zk;`π̂

k` − 2
n−1

trĝπ̂ divĝZ,

divĝ(LĝZ)j +
2(n− 1)

n− 2
v,kπ̂

k
j −

2

n− 2
v,jtrĝπ̂ −

2

n− 2
(divĝπ̂)jv

)
,

where indices are raised and covariant derivatives are taken with respect to ĝ. Because
q ∈ (n−2

2
, n − 2) and p > n, DT(ĝ,π̂)|(1,0) and DT(g,π)|(1,0) are Fredholm operators of index 0

for λ sufficiently large [4]. Instead of proving the linearization has a trivial kernel as in the
proof of Theorem 6.3 which seems difficult for the system, we use the following argument.

Let K1 be a complementing subspace for the kernel of DT(g,π)|(1,0) in W 2,p
−q ×W

1,p
−1−q. Since

the linearization DΦ|(g,π) : W 2,p
−q ×W

1,p
−1−q → W 0,p

−2−q is surjective [18, Proposition 3.1], and
because DT(g,π)|(1,0) is Fredholm we can find smooth compactly supported symmetric (0, 2)-
tensors {(hk, wk)}Nk=1 whose images {DΦ|(g,π)(hk, wk)} form a basis for a complementing

subspace of the image of DT(g,π)|(1,0) in W 0,p
−2−q. Let K2 = span{(hk, wk)}Nk=1. For (u−1, X) ∈

K1 and (h,w) ∈ K2, define the maps T (ĝ,π̂), T (g,π) as follows:

T (ĝ,π̂)(u,X, h, w) = Φ(u
4

n−2 ĝ + h, u
2

n−2 (π̂ + LĝX) + w)

T (g,π)(u,X, h, w) = Φ(u
4

n−2 g + h, u
2

n−2 (π + LgX) + w).

Observe that DT (ĝ,π̂)|(1,0,0,0) is an isomorphism for λ sufficiently large by construction.

Using that (ĝ, π̂) converges to (g, π) in W 2,p
−q ×W 1,p

−q−1 as λ → ∞, it is easy to see that

DT (ĝ,π̂)|(u,X,h,w) converges to DT (g,π)|(u,X,h,w) as λ → ∞, locally uniformly in (u,X, h, w) in
the strong operator topology. By the inverse function theorem, for all λ ≥ 1 sufficiently
large, T (ĝ,π̂) restricts to a diffeomorphism defined on an open neighborhood of (1, 0, 0, 0)
(independent of λ ≥ 1) and onto an open neighborhood containing a ball centered at (0, 0)

in W 0,p
−2−q. The preimage T

−1

(ĝ,π̂)(0, 0) gives the desired solutions.
The inequalities

|E − Ē| < ε, |P − P̄ | < ε

follow from Theorem 6.1. �

The vacuum assumption in the above theorem can be replaced by appropriate assumptions
on (µ, J). In fact, using a more delicate perturbation argument, one can prove that if (g, π)
satisfies the dominant energy condition, it is possible to obtain a strict dominant energy
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condition for the approximate data (ḡ, π̄) with harmonic asymptotics [21, Theorem 18].
This fact is used in the proof of the spacetime positive mass theorem to reduce the general
case of the theorem to the special case of initial data that has harmonic asymptotics with a
strict dominant energy condition [21].

6.4. Applications to the center of mass and angular momentum. Generalizing the
proof of Theorem 6.6, we show that one can arbitrarily specify the BORT center of mass
and the ADM angular momentum.

Theorem 6.7 (Huang-Schoen-Wang [31, Theorem 3]). Let (M, g, π) be a three-dimensional
vacuum asymptotically flat initial data set satisfying the Regge-Teitelboim conditions and
E > |P |. Given any constant vectors ~α0, ~γ0 ∈ R3, there exist ε > 0 and a vacuum initial
data set (ḡ, π̄) satisfying the Regge-Teitelboim conditions such that

‖g − ḡ‖W 2,p
−q
≤ ε, ‖π − π̄‖W 1,p

−1−q
≤ ε,

and

E = E, P = P, J = J + ~α0, CBORT = CBORT + ~γ0.

Analogous to the positive mass conjecture, there is a conjectured inequality between the
ADM energy and angular momentum. It has been proven thatE ≥

√
|J | for axial-symmetric

asymptotically flat black hole initial data sets [19, 15, 17, 16, 47, 53]. See also [52]. However,
Theorem 6.7 implies that such inequality does not hold in general for asymptotically flat
data sets without axial-symmetry.

The proof of Theorem 6.7 is essentially along the same line as the proof of Theorem 6.6,
but different cutoff data sets are employed. Let σ, τ be symmetric (0, 2)-tensors on R3.
Suppose further that σ, τ are compactly supported on {1 ≤ |x| ≤ 2} satisfying the linearized
constraint equations (at the trivial data)∑

i,j

(σij,ij − σii,jj) = 0,

and for j = 1, 2, 3, ∑
i

τij,i = 0.

Consider

ĝλ = g + σλ and π̂λ = π + τλ,

where σλ = σ(x/λ), τλ = τ(x/λ). To specify the center of mass and angular momentum,
the proof centers on constructing the tensors σ, τ with certain desired properties. For the
angular momentum, we need to construct σ, τ whose components satisfy σij(x) = σij(−x),
τij(x) = τij(−x) such that for a given ~α = (α1, α2, α3) ∈ R3,∫

{1≤|x|≤2}

∑
i,j,l

[
1

2
τij,lY

l
(k) + τil(Y

l
(k)),j

]
σij dx = αk

for each k = 1, 2, 3, where Y(k) is the rotation vector field Y(k) = ∂
∂xk
× ~x. To specify the

center of mass, we need to construct a divergence-free and trace-free tensor σ such that for
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a given ~γ = (γ1, γ2, γ3) ∈ R3, ∫
{1≤|x|≤2}

xk
∑
i,j,l

(σij,l)
2 dx = γk,

for each k = 1, 2, 3. We refer the construction of those tensors to [31, Theorem 2.1, Theorem
2.2].
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