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Abstract. The rigidity of the positive mass theorem states that the
only complete asymptotically flat manifold of nonnegative scalar curva-
ture and zero mass is Euclidean space. We prove a corresponding sta-
bility theorem for spaces that can be realized as graphical hypersurfaces
in Rn+1. Specifically, for an asymptotically flat graphical hypersurface
Mn ⊂ Rn+1 of nonnegative scalar curvature (satisfying certain technical
conditions), there is a horizontal hyperplane Π ⊂ Rn+1 such that the
flat distance between M and Π in any ball of radius ρ can be bounded
purely in terms of n, ρ, and the mass of M . In particular, this means
that if the masses of a sequence of such graphs approach zero, then
the sequence weakly converges (in the sense of currents, after a suitable
vertical normalization) to a flat plane in Rn+1. This result generalizes
some of the earlier findings of the second author and C. Sormani [14]
and provides some evidence for a conjecture stated there.

1. Introduction

The positive mass theorem states that any complete asymptotically flat
manifold of nonnegative scalar curvature has nonnegative mass. Further-
more, if the mass is zero, then the manifold must be Euclidean space. The
second statement may be thought of as a rigidity theorem, and it is natural
to consider the stability of this rigidity statement. That is, if the mass is
small, must the manifold be “close” to Euclidean space in some sense? Or
put another way, which geometric features of the manifold can be bounded
by the mass?

One difficulty that arises in the study of stability is that the mass cannot
control the geometry of a region that is separated from infinity by a minimal
hypersurface. In other words, the mass cannot “see” the geometry behind an
apparent horizon. One obvious approach to this problem is to only consider
the exterior region of the manifold lying outside the outermost minimal
hypersurface. However, even in the absence of minimal hypersurfaces, one
can have arbitrarily deep “gravity wells” that make small contributions to
the mass. (See [14] for details.) These examples show that the rigidity of the
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positive mass theorem cannot be stable with respect to Gromov-Hausdorff
convergence, much less than any sort of smooth convergence.

Various types of stability results have appeared in the literature. In three
dimensions, H. Bray and F. Finster [1] used spinor methods to show that
if a sequence of smooth asymptotically flat metrics of nonnegative scalar
curvature is already known to converge to a smooth limit in such a way
that the mass approaches zero, and such that there are uniform bounds on
the curvature and the isoperimetric constant, then the limit space must be
Euclidean space. This was generalized to higher dimensional spin manifolds
by Finster and I. Kath [4]. Finster [3] also obtained an upper bound on the
L2-norm of the curvature tensor, in terms of mass, with the exception of
a set of small surface area. J. Corvino [2] proved that a particular bound
on the mass by the global maximum of the sectional curvature implies that
the manifold is topologically trivial. Under the assumption of conformal
flatness and zero scalar curvature outside a compact set, the second au-
thor [12] proved that if a sequence of smooth asymptotically flat metrics of
nonnegative scalar curvature has mass approaching zero, then the sequence
converges smoothly to the Euclidean metric in a region outside a compact
set. These various results address the stability question in the region of the
manifold where the curvature tensor is small in some norm.

Another aspect of the stability problem is to understand what happens
in the region of a manifold of small mass where the curvature tensor may be
large. As mentioned above, since it is known that the positive mass theorem
is not stable with respect to Gromov-Hausdorff convergence, it is not clear
what the optimal convergence should be. Recently, the second author and
C. Sormani [13, 14] proved a stability result with respect to Sormani and
S. Wenger’s “intrinsic flat” convergence, for the case of spherically symmetric
manifolds (discussed below).

The main purpose of this paper is to study this stability problem in a
more general setting without spherical symmetry. Note that a spherically
symmetric manifold can be isometrically embedded in Euclidean space as a
hypersurface. This paper considers more general asymptotically flat mani-
folds of nonnegative scalar curvature which can be isometrically embedded
in Euclidean space as asymptotically flat graphical hypersurfaces. In this
setting, G. Lam [11] gave a direct proof that the ADM mass is nonnegative.
The first author and D. Wu [8] generalized it to asymptotically flat hyper-
surfaces which are graphical outside a compact set, and they also proved
rigidity: if the mass is zero, then the hypersurface must be a hyperplane.

As stated above, any global stability must be with respect to some sort
of weak topology. Following the work of [14], we choose to use the Federer-
Fleming’s flat topology on currents in Euclidean space. See Section 5 for
the definition.

Theorem 1.1. Let n ≥ 5. Let Mi be a sequence of Cn+1 asymptotically
flat graphs of nonnegative scalar curvature in Rn+1, either entire or with
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minimal boundary. Assume that almost every level set of Mi is strictly mean-
convex and outward-minimizing in the hyperplane. Normalize the height so
that the level set Mi ∩ {xn+1 = 0} has volume equal1 to 2ωn−1(2m)

n−1
n−2 .

If the limit of masses of the Mi’s is zero, then Mi weakly converges to
{xn+1 = 0} in the sense of currents.

For n = 3 or 4, if we make the additional assumption that the sequence
is uniformly (r0, γ, α)-asymptotically Schwarzschild (see Definition 2.5) for
some choice of (r0, γ, α) with α < 0, then we obtain the the same conse-
quence.

See Theorems 5.2 and 5.3 for more precise statements involving flat dis-
tance, in particular, an explicit bound on the flat distance (in a ball) between
Mi and {xn+1 = 0} in terms of the ADM mass. All of the relevant definitions
in Theorem 1.1 appear in Section 2.

Although the assumption that the level sets are strictly mean-convex and
outward-minimizing is undesirable, it is not as restrictive as it might first
appear, since our other hypotheses imply that the smooth level sets must be
weakly mean-convex (see Theorem 2.8). Note that since the assumption is
satisfied whenever the level sets are convex, it is possible to construct many
examples of spaces satisfying this hypothesis: First start with a spherically
symmetric asymptotically flat metric of nonnegative scalar curvature, iso-
metrically embedded into Rn+1, and then perturb it slightly in any region
where the scalar curvature is strictly positive. The main reason that we
require the level sets to be strictly mean-convex and outward-minimizing
is the use of the Minkowski inequality for the mean curvature integral by
G. Huisken [9] and by A. Freire and F. Schwartz [5].

The extra assumption in dimensions 3 and 4 is a uniformity assumption on
the asymptotics of the Mi’s. Although this sort of assumption is a reasonable
one for our stability theorem, we do not know if it is necessary. One reason
why the lower dimensional case is more difficult is that asymptotically flat
graphs in low dimension are not asymptotic to planes; they are unbounded
at infinity.

Theorem 1.1 fits together well with earlier work of the second author and
Sormani [14]. They conjectured that the rigidity of the positive mass theo-
rem might be stable with respect to Sormani-Wenger convergence. That is,
they suggested that a sequence of complete asymptotically flat manifolds of
nonnegative scalar curvature (possibly with outermost minimal boundary)
with masses approaching zero should converge to Euclidean space in the
pointed Sormani-Wenger topology. The Sormani-Wenger distance between
Riemannian manifolds (or more generally, between integral current spaces)
is an “intrinsic” version of the flat distance between integral currents in Eu-
clidean space, in essentially the same sense that Gromov-Hausdorff distance
is an intrinsic version of the Hausdorff distance between subsets of Euclidean
space. (See [19] for details.) The second author and Sormani proved that

1To be precise, we normalize so that h0, defined in Definition 3.7, is zero.
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the conjecture holds for spherically symmetric spaces, thereby establishing
a proof-of-concept in a simple test case [14], and they proved an analogous
result for the Penrose inequality [13] in the class of spherically symmetric
spaces. A compactness result in this setting is obtained in [15].

Although the Sormani-Wenger distance is an intrinsic version of the usual
flat distance, it is important to note that they do not agree, even for sub-
manifolds of Euclidean space. Because of this, our results do not generalize
the results of [14], but they are in the same spirit and may be regarded as
evidence for the main conjecture in [14].

We summarize our approach as follows: We want to show that in any
large fixed ball, a graph of small mass is close to a plane in flat distance.
The mass provides a bound on a weighted total mean curvature integral for
each level set Σh:

m ≥ 1
2(n− 1)ωn−1

∫
Σh

|Df |2

1 + |Df |2
HΣhdH

n−1.

This quantity may be regarded as a quasi-local mass for level sets. Together
with the Minkowski inequality, we are able to use this bound to prove a
differential inequality for the volume function of the level sets, as long as
the volume is not too small (Lemma 3.5). When computing flat distance,
the level sets of small volume are negligible because of the isoperimetric
inequality. The differential inequality guarantees that the volumes of the
remaining level sets grow as fast as they do for Schwarzschild spaces of
comparable mass (see proof of Theorem 3.10). In particular, in dimensions
greater than 4, the volume must become infinite very quickly, or in other
words, all of these level sets are trapped between two planes that are a short
distance apart.

In dimensions 3 and 4, we use a strong maximum principle to show that
whenever a ball can be fit inside of a level set, the part of the graph out-
side that ball must lie beneath a corresponding Schwarzschild graph of
equal mass. (See Lemma 4.1 and Figure 1.) As this mass is small, the
Schwarzschild graph is close to a plane (in the large fixed ball). The uni-
formity assumption that we make in low dimension allows us to see that
once a level set has large enough volume, we can fit a ball of appropriate
size inside (Lemma 4.3). Finally, the differential inequality shows that just
a small increase in height is enough to produce a level set that will fit one
of these balls inside it.

After the paper was submitted for publication, our results (Theorem 5.2
and Theorem 5.3), together with the results of Sormani [18], were used by
Sormani and the authors to settle the stability question with respect to the
Sormani-Wenger topology [6] and thus confirmed the conjecture in [14] in
the setting of asymptotically flat graphical hypersurfaces.

Acknowledgements. Both authors would like to thank Christina Sormani
for discussions. They also thank Hugh Bray and Piotr Chruściel for their
interest in this work.
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2. Background on asymptotically flat graphs

Definition 2.1. Let f be a C1 function defined outside a compact subset
of Rn, where n ≥ 3. We say that the graph of f in Rn+1 (or sometimes just
f) is asymptotically flat if

lim
|x|→∞

f(x) = constant or ±∞

and

lim
|x|→∞

|Df(x)| = 0.

Definition 2.2. Let Ω be a bounded open set in Rn whose complement is
connected. Let f ∈ Ck(Rn \Ω)∩C0(Rn \Ω). We say that the graph of f (or
just f) is Ck with a minimal boundary if f is constant on each component
of ∂Ω and |Df(x)| → ∞ as x → ∂Ω. A Ck entire function f is just a Ck

function defined on all of Rn.

Example 2.3. Let M be a totally geodesic time-slice of the Schwarzschild
spacetime of ADM mass m. If m > 0, the region of M outside the event
horizon can be isometrically embedded into Rn+1 as the asymptotically flat
graph of a smooth function defined on Rn \ B(2m)1/(n−2)(0), with minimal
boundary, such that the boundary lies in the plane {xn+1 = 0}. Explicitly,
it is the graph of the function Sm(|x|) where

Sm(r) =


√

8m(r − 2m) for n = 3
√

2m log
(

r√
2m

+
√

r2

2m − 1
)

for n = 4

S∞ +O(r2−n
2 ) for n ≥ 5,

for some constant S∞ depending on n and m. The function Sm arises
from solving the ODE for a spherically symmetric graph with zero scalar
curvature.

Definition 2.4 ([11]). Let f be an asymptotically flat C2 function defined
on an exterior region of Rn. The ADM mass of the graph of f is defined by

m =
1

2(n− 1)ωn−1
lim
r→∞

∫
|x|=r

1
1 + |Df |2

∑
i,j

(fiifj − fijfi)
xj

|x|
dHn−1,(2.1)

where ωn−1 is the volume of the unit (n− 1)-sphere.

It is shown in [11, 8] that under the additional assumptions |Df(x)|2 =
O2(|x|−q) for some q > (n − 2)/2 and |Df(x)|2|D2f(x)| = o(|x|1−n), the
graph of f will be asymptotically flat in the usual sense, and the definition
of mass above coincides with the usual definition of ADM mass.
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Definition 2.5. Let α < 2 − n
2 . We say that a function f is uniformly

(r0, γ, α)-asymptotically Schwarzschild if f is a C1 function defined on Rn \
Br0 and there exists a constant Λ such that

|f(x)− (Λ + Sm(|x|))| ≤ γ|x|α,
for all |x| > r0, where m is the mass of f , and Sm is the Schwarzschild
function described in the example above.

The following identity relates the scalar curvature of an asymptotically
flat graph and its mass.

Theorem 2.6 ([16]). Let f ∈ C2 be defined on an open subset of Rn. The
scalar curvature of the graph of f can be expressed as the divergence of a
vector field as follows:

R =
∑
j

∑
i

∂j

(
fiifj − fijfi
1 + |Df |2

)
.

Let Ωh be a bounded subset of Rn such that ∂Ωh = f−1(h), denoted by
Σh. Combining this theorem with the divergence theorem, and using the
definition of ADM mass above, one obtains, for any regular value h of f ,

2(n− 1)ωn−1m =
∫

Rn\Ωh
Rdx+

∫
Σh

|Df |2

1 + |Df |2
HΣhdH

n−1,(2.2)

where HΣh is the mean curvature of Σh in the hyperplane {xn+1 = h} with
respect to inward pointing normal [11]. By setting Ωh = ∅, one immediately
obtains the positive mass theorem for entire graphs.

Corollary 2.7 ([11]). Let f be a C2 asymptotically flat entire graph of
nonnegative scalar curvature. Then its mass is nonnegative.

We also note that under the nonnegative scalar curvature hypothesis, the
flux integral appearing in the definition of mass is monotone, and thus the
mass always exists, though it is potentially infinite.

We recall the following theorem.

Theorem 2.8 ([8, 7]). Let M be a two-sided embedded Cn+1 hypersurface
in Rn+1 with nonnegative scalar curvature. Assume M \ K is the union
of asymptotically flat graphs where K is a compact subset of M . Suppose
that either M has no boundary, or it has a minimal boundary (in the sense
described in Definition 2.2). Then M is weakly mean-convex. Moreover, if
M is also minimal, then it must be a hyperplane.2

Furthermore, for any hyperplane intersecting M in a C2 hypersurface Σ
in the hyperplane, we have H ·HΣ ≥ 0 with H = 0 only if HΣ = 0, where H
is the mean curvature vector of M in Rn+1 and HΣ is the mean curvature

2This last statement, which was not stated explicitly in [8, 7], is a simple consequence of
[8, Theorem 2.2]. More generally, a two-sided C2 hypersurface in Rn+1 with nonnegative
scalar curvature and zero mean curvature must be contained in a hyperplane.
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vector of Σ in the hyperplane. As a consequence, the mean curvature scalar
of Σ inside the hyperplane has a sign.

Corollary 2.9 ([8]). Let M satisfy the hypotheses of Theorem 2.8. Then
the mass of each end is nonnegative. Furthermore, if the mass of one end
is zero, then M is a hyperplane.

Definition 2.10. The mean curvature vector of a hypersurface is pointing
upward if at every point the vector either points upward or is zero, and it
points upward somewhere. One can define the mean curvature vector to be
pointing downward analogously.

For an asymptotically flat graph that satisfies the hypotheses of Theo-
rem 2.8, the weak mean-convexity of the graph implies that we may sensi-
bly refer to the mean curvature vector field “pointing upward” or “pointing
downward.” Of course, if the mean curvature vector points downward, then
simply replacing f by −f will yield a graph with mean curvature pointing
upward.

Our sign convention for the mean curvature vector is such that pertur-
bations of a hypersurface in the direction of the mean curvature vector
decrease volume. More specifically, our definition implies that the mean
curvature of a unit (n− 1)-sphere with respect to inward unit normal in Rn

has positive mean curvature H = n− 1. The mean curvature vectors of the
Schwarzschild graphs in Example 2.3 are pointing upward. In particular,
a uniformly (r0, γ, α)-asymptotically Schwarzschild graph that satisfies the
hypotheses of Theorem 2.8 must have upward pointing mean curvature.

Corollary 2.11. Let f be a Cn+1 asymptotically flat function, either entire
or with minimal boundary, whose graph has nonnegative scalar curvature
and upward pointing mean curvature vector field. Let Σh be a level set of a
regular value h, then

HΣh = −HΣh

(Df, 0)
|Df |

and HΣh ≥ 0.

Proof. Let H be the mean curvature vector of the graph of f . The up-
ward pointing assumption implies that H = H (−Df,1)√

1+|Df |2
and H ≥ 0. Then

Theorem 2.8 (that H ·HΣh ≥ 0) yields the desired result. �

3. Volume estimates

Let f be an asymptotically flat function, either entire or with minimal
boundary (defined on the complement of some Ω in the second case). By
assumption, f is constant on each component of ∂Ω. Let f̄ denote the
extension of f to all of Rn such that f̄ is constant on each component of
Ω̄. For each h ∈ R, define Ωh = {x ∈ Rn : f̄(x) < h} and Σh = ∂∗Ωh,
the reduced boundary of Ωh. (For a definition of reduced boundary, see [17,
page 72].) By Sard’s Theorem, if f is Cn on Rn \ Ω̄, then the set of critical
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values of f has zero measure, and for each regular value h, Σh = ∂Ωh is just
a smooth level hypersurface for f . We define the volume function as follows:

V (h) = |Σh| = |∂∗Ωh|,(3.1)

where |Σh| denotes the (n− 1)-dimensional Hausdorff measure of Σh. Note
that lower semicontinuity of perimeter implies that the function V is left
lower semicontinuous.

Definition 3.1. Let E ⊂ Rn be a bounded subset of finite perimeter and
let ∂∗E be its reduced boundary. We say that ∂∗E is outward-minimizing if

|∂∗E| ≤ |∂∗F |

for any bounded set F ⊂ Rn containing E.

Remark 3.2. This property is referred to as the “minimizing hull” property
for E in [10].

Lemma 3.3. Let f be a non-constant Cn asymptotically flat function, either
entire or with minimal boundary, such that its graph has upward pointing
mean curvature vector field. Let hmax = lim|x|→∞ f(x), which is a real
number or ±∞ by assumption. Then f(x) < hmax everywhere.

Furthermore, if Σh is outward-minimizing for h in a dense subset, then
V (h) is finite for all h < hmax and V (h) is nondecreasing on (−∞, hmax).

Proof. Since the mean curvature of the graph of f points upward, the strong
maximum principle for the mean curvature operator implies that f cannot
attain an interior local maximum unless f is a constant (which it is not, by
assumption). If the graph of f has a minimal boundary, then f does not
achieve a local maximum at the boundary; otherwise it would contradict
Corollary 2.11. Therefore f(x) < hmax everywhere. Thus Ωh is a bounded
subset for h < hmax and hence V (h) is finite for any regular value h. By left
lower semicontinuity of V , and density of the regular values, V (h) is finite
for all h < hmax.

We now use the outward-minimizing property to show that V (h) is non-
decreasing. Let h1 < h2 < hmax. Let ε > 0. By left lower semicontinuity of
V and our density assumption, there exists some h < h1 < h2 such that Σh

is outward-minimizing and

V (h1) ≤ V (h) + ε ≤ V (h2) + ε.

Therefore V is nondecreasing. �

Observe that (2.2) and the assumption R ≥ 0 imply

m ≥ 1
2(n− 1)ωn−1

∫
Σh

|Df |2

1 + |Df |2
HΣhdH

n−1.

The goal of next two lemmas is to use the above bound to derive a differential
inequality for V (h).
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Lemma 3.4. Let f ∈ Cn+1(Rn\Ω) be an asymptotically flat function, either
entire or with minimal boundary, whose graph has nonnegative scalar cur-
vature and upward pointing mean curvature vector field. Let h be a regular
value of f . Then for any real number α > 0, we have

V ′(h) > α−1

[∫
Σh

HΣh − (1 + α−2)Cnm
]
,(3.2)

where Cn = 2(n− 1)ωn−1.

Proof. Let {|Df | ≥ α} be the set of points x in Rn where |Df(x)| ≥ α. The
set {|Df | < α} is defined analogously. By (2.2) and R ≥ 0 we have

Cnm ≥
∫

Σh∩{|Df |≥α}

|Df |2

1 + |Df |2
HΣh

≥ α2

1 + α2

∫
Σh∩{|Df |≥α}

HΣh .

(3.3)

On the other hand, the variation of the level sets at Σh for a regular value
h is

d

dh
Σh(x) =

Df(x)
|Df(x)|2

.

Since V (h) is finite by Lemma 3.3, we may compute V ′(h) using the first
variation formula:

V ′(h) = −
∫

Σh

HΣh ·
(Df, 0)
|Df |2

=
∫

Σh

HΣh

|Df |

=
∫

Σh∩{|Df |<α}

HΣh

|Df |
+
∫

Σh∩{|Df |≥α}

HΣh

|Df |

>
1
α

∫
Σh∩{|Df |<α}

HΣh

=
1
α

(∫
Σh

HΣh −
∫

Σh∩{|Df |≥α}
HΣh

)
,

where we used Corollary 2.11 in the second equality. The desired result
follows by substituting the second integral by (3.3). �

Lemma 3.5. Let f be a Cn+1 asymptotically flat function, either entire
or with minimal boundary, whose graph has nonnegative scalar curvature
and upward pointing mean curvature vector field. Assume m > 0, and let
h be a regular value of f such that V (h) > ωn−1(2m)

n−1
n−2 . If Σh is strictly

mean-convex and outward-minimizing, then

V ′(h) > Cn
2m
3
√

3

[
1

2m

(
V (h)
ωn−1

)n−2
n−1

− 1

] 3
2

,(3.4)
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where Cn = 2(n− 1)ωn−1.

Proof. Recall the following Minkowski inequality [9, 5] for outward-minimizing
Σh with HΣh > 0: ∫

Σh

HΣh ≥
Cn
2

(
V (h)
ωn−1

)n−2
n−1

.

Inserting the Minkowski inequality into (3.2) yields

V ′(h) > Cnα
−1

[
1
2

(
V (h)
ωn−1

)n−2
n−1

− (1 + α−2)m

]
.(3.5)

For V (h) > ωn−1(2m)
n−1
n−2 , the right hand side of (3.5), as a function of

α ∈ (0,∞), attains a global maximum at

α =
√

3

[
1

2m

(
V (h)
ωn−1

)n−2
n−1

− 1

]− 1
2

.

The desired inequality follows by inserting this choice of α in (3.5). �

Remark 3.6. From our proof it is easy to see that (3.4) is not optimal.
For the Schwarzschild graph h = Sm(r) of mass m > 0, we can explicitly
compute

V ′(h) = (n− 1)ωn−1r
n−2(S′m(r))−1

= (n− 1)ωn−1r
n−2

[
1

2m
rn−2 − 1

]− 1
2

.

On the other hand, the right hand side of (3.4) is

2
3
√

3
(n− 1)ωn−1(rn−2 − 2m)

[
1

2m
rn−2 − 1

]− 1
2

.

We now choose a height h0 large enough so that the previous lemma
applies for h ≥ h0, but still has V (h0) bounded in terms of the mass. We
will argue that the graph of f is close to the plane xn+1 = h0 in the flat
topology.

Definition 3.7. Let f be a Cn+1 asymptotically flat function, either entire
or with minimal boundary, such that its graph has upward pointing mean
curvature vector field, and assume m > 0. Let h0 be the height defined by

h0 = sup{h : V (h) ≤ 2ωn−1(2m)
n−1
n−2 }.

Remark 3.8. The factor of 2 in the definition of h0 is chosen for conve-
nience. In fact, for any β > 1, one can define h0 to be the supremum of
{h : V (h) ≤ βωn−1(2m)

n−1
n−2 }. Then the constant C in Theorem 3.10 depends

on β, which may, however, diverge to ∞ as β → 1+.

We need a comparison principle for ordinary differential inequalities. The
statement is standard for C1 solutions. Here we consider rough solutions.
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Lemma 3.9. Let V : [a, b] → R be nondecreasing. Suppose V ′ ≥ F (V )
holds almost everywhere in [a, b]. Suppose that F is nondecreasing and con-
tinuously differentiable. Let Y be a C2 function satisfying

Y ′ = F (Y ) and Y (a) ≤ V (a).

Then Y ≤ V on [a, b].

Proof. For any ε > 0, let Yε be the unique C2 solution to

Y ′ε = F (Yε) and Yε(a) = Y (a)− ε.
Note that Yε varies continuously in ε and limε→0 Yε = Y at each point of
[a, b]. Therefore it suffices to show that Yε < V for any ε > 0. We prove it
by contradiction.

Suppose Yε(t) ≥ V (t) for some ε and for some t ∈ [a, b]. Define

t0 = inf{t ∈ [a, b] : Yε(t) ≥ V (t)},
which exists by assumption. Since V is nondecreasing and Y is continuous, it
follows that t0 > a and V (t0) = Yε(t0). By the definition of t0, Yε(t) < V (t)
on [a, t0), and therefore F (Yε) ≤ F (V ) on [a, t0) since F is nondecreasing.
If E is the measure zero set where V ′ ≥ F (V ) fails, we have∫

[a,t0)\E
V ′ ≥

∫
[a,t0)\E

F (V )

≥
∫

[a,t0)\E
F (Yε)

=
∫

[a,t0)\E
Y ′ε

=
∫

[a,t0)
Y ′ε = Yε(t0)− Yε(a)

= Yε(t0)− (Y (a)− ε) ≥ Yε(t0)− V (a) + ε.

On the other hand, by the fundamental theorem of calculus for nondecreas-
ing functions,

V (t0)− V (a) ≥
∫

[a,t0)\E
V ′ ≥ Yε(t0)− V (a) + ε.

So V (t0) > Yε(t0), which is a contradiction. �

Theorem 3.10. Let f be a Cn+1 asymptotically flat function, either entire
or with minimal boundary, whose graph has nonnegative scalar curvature and
upward pointing mean curvature vector field. Assume m > 0, and that Σh

is strictly mean-convex and outward-minimizing for almost every h. Then
the following results hold.

For n ≥ 5, f is a bounded function and there exists a constant C (de-
pending only on n) such that

0 < sup(f)− h0 < Cm
1

n−2 .



12 LAN-HSUAN HUANG AND DAN A. LEE

For n = 3 or 4, and for any h > h0, there exists an absolute constant C
such that

0 ≤ h− h0 ≤

{
C
√
m[V (h)]

1
4 for n = 3

C
√
m log[m−

3
2V (h)] for n = 4.

Proof. Rescale f by

f̃(x) = m−
1

n−2 (f(m
1

n−2x)− h0).

Then the graph of f̃ is asymptotically flat with nonnegative scalar curvature
and mass equal to 1.

For h > 0, define Ṽ (h) to be the volume function of f̃ defined as in (3.1),
and then define Ṽ at 0 by

Ṽ (0) := lim
h→0+

Ṽ (h) = lim
h→h+

0

m−
n−1
n−2V (h) ≥ 2

(
2
n−1
n−2ωn−1

)
.

By (3.4), the differential inequality

Ṽ ′(h) > Cn
2

3
√

3

1
2

(
Ṽ (h)
ωn−1

)n−2
n−1

− 1


3
2

holds for almost every h in [0,∞).
Let Y be the unique smooth solution to

Y ′(h) = Cn
2

3
√

3

[
1
2

(
Y (h)
ωn−1

)n−2
n−1

− 1

] 3
2

and Y (0) = 2
(

2
n−1
n−2ωn−1

)
.

Observe that the initial value is specifically chosen in the range such that the
right hand side of the ODE is smooth in Y , which explains the motivation
behind the definition of h0. Note that the construction of Y is completely
determined by n. We can now use our ODE comparison Lemma 3.3 to
conclude that for any h ≥ 0,

Y (h) ≤ Ṽ (h).

If n ≥ 5, Y (h) tends to infinity at a finite height C > 0 depending only
on n. Therefore Ṽ (h) must tend to infinity at a finite height h̃max ≤ C. By
Lemma 3.3, sup f̃ < h̃max and thus 0 < sup f̃ < C. This implies the desired
inequality for sup f .

For n = 3 or 4, the solution Y is finite for all h ≥ 0. To be more precise,
we can see that for large h, Y (h) grows like h4 for n = 3 and grows like an
exponential function for n = 4. Therefore there is a constant C such that
for all h ≥ 0, h ≤ C[Y (h)]

1
4 for n = 3, and h ≤ C log[Y (h)] for n = 4. Since

Y (h) ≤ Ṽ (h), it follows that

h ≤ C[Ṽ (h)]
1
4 for n = 3

h ≤ C log[Ṽ (h)] for n = 4.
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If we consider the rescaled height h̃ = m−
1

n−2 (h − h0), then the rescaled
volume is Ṽ (h̃) = m−

n−1
n−2V (h). The result follows. �

4. Bounds in lower dimension

In this section we prove the bounds needed for our main theorem in
dimensions 3 and 4. This section is not used in the proof of Theorem 1.1 in
dimensions n ≥ 5.

As mentioned earlier, asymptotically flat graphs in lower dimension are
not asymptotic to planes, and therefore we need a more subtle argument
that requires a uniformity assumption on the asymptotics.

We start with a lemma3 applying the strong maximum principle for the
scalar curvature operator [7, Theorem 4.3] to bound f outside a compact
set by a vertical translation of the Schwarzschild function Sm(|x|).

Lemma 4.1. Let n = 3 or 4. Let f ∈ Cn+1(Rn\Ω) be an asymptotically flat
function of mass m, either entire or with minimal boundary, whose graph
has nonnegative scalar curvature and upward pointing mean curvature vector
field. Let Sm be the Schwarzschild function of m > 0 defined in Example 2.3,
and assume that there exists some Λ such that

f(x)− (Λ + Sm(|x|)) =
{
o(|x|

1
2 ) for n = 3

o(log |x|) for n = 4.

Choose any r1 > (2m)
1

n−2 and any h1 large enough that

Br1 ⊂ Ωh1 .

Then for any x /∈ Br1,

f̄(x)− h1 ≤ Sm(|x|)− Sm(r1),

where f̄ is the extension of f to all of Rn that is constant on each component
of Ω̄.

Proof. Suppose, to the contrary that f̄(x)−h1 > Sm(|x|)−Sm(r1) for some
x /∈ Br1 . Then it is also true that f̄(x) − Sm′(|x|) > h1 − Sm′(r1) for
some m′ slightly larger than m. Let a > h1 − Sm′(r1) be the supremum of
f̄(x)− Sm′(|x|) over the complement of Ω ∪Br1 .

By our assumption that Br1 ⊂ Ωh1 , it follows that f̄(x) ≤ h1 at ∂Br1 ,
and hence f̄(x) − Sm′(|x|) ≤ h1 − Sm′(r1) < a at ∂Br1 . Therefore the
supremum of f̄(x) − Sm′(|x|) cannot be achieved at ∂Br1 . Meanwhile, our
asymptotic assumption guarantees that the supremum is not achieved “at
infinity” since f̄(x) − Sm′(|x|) approaches −∞ as |x| → ∞. Therefore a
local maximum of f̄(x) − Sm′(|x|) is achieved at some x′ /∈ B̄r1 . It is clear
that a local maximum cannot occur on Ω. Away from Ω, the graph of f(x)
has nonnegative scalar curvature and upward pointing mean curvature, and
it touches the graph of Sm′(|x|) + a (which has zero scalar curvature and

3There is a version of this lemma for n ≥ 5, but we do not need it.
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graph[f(x)]

graph[Sm(|x|)− Sm(r1) + h1]

{xn+1 = h1}r1

Ωh1

Figure 1. The graph of f(x) lies below the graph of
Sm(|x|)− Sm(r1) + h1, as shown in Lemma 4.1.

upward pointing mean curvature) from below at the point x′. We can now
invoke the strong maximum principle for the scalar curvature operator in
[7, Theorem 4.3] to conclude that f(x) = Sm′(|x|) +a on the complement of
Ω ∪Br1 , which contradicts the fact that f(x) is asymptotic to Sm(|x|). �

Our goal in the next three technical lemmas is to obtain the radius r1 for
which we can bound the volume of the smallest level set that contain Br1 in
terms of r1, under the uniformity assumption.

Lemma 4.2. Assume n = 3 and α < 1
2 , or n = 4 and α < 0. Let 1 < a < b

and c > 0. There exists a constant C(γ, α, a, b, c) such that if

r1 ≥

 max
(
C(γ, α, a, b, c)m−

1
1−2α , 2m

)
for n = 3

max
(
C(γ, α, a, b, c)m

1
2α ,
√

2m
)

for n = 4,

then
γ(cr1)α < Sm(br1)− Sm(ar1).

Proof. First consider the n = 3 case. As long as r1 > 2m, we have

Sm(br1)− Sm(ar1) =
√

8m(
√
br1 − 2m−

√
ar1 − 2m)

>
√

8m(
√
br1 −

√
ar1)

=
√

8m(
√
b−
√
a)
√
r1,

where the middle inequality follows from the fact that derivative of the
square root function is positive and decreasing.

To find r1 that satisfies γ(cr1)α < Sm(br1)− Sm(ar1), it suffices to solve
r1 in the following inequality

γ(cr1)α ≤
√

8m(
√
b−
√
a)
√
r1,
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which is equivalent to

(r1)
1
2
−α ≥

[
γcα√

8(
√
b−
√
a)

]
m−

1
2 ,

and the result follows.
For the n = 4 case, as long as r1 >

√
2m,

Sm(br1)− Sm(ar1) =
√

2m log

(
br1 +

√
(br1)2 − 2m

ar1 +
√

(ar1)2 − 2m

)

>
√

2m log
(
br1

ar1

)
=
√

2m log
(
b

a

)
,

where the middle inequality follows from the fact that r+
√
r2−2m
r is strictly

increasing for r > 2m. Finding r1 that solves

γ(cr1)α ≤
√

2m log
(
b

a

)
yields the desired result. �

Lemma 4.3. Let n = 3 or 4. Let f be a uniformly (r0, γ, α)-asymptotically
Schwarzschild function of mass m > 0. There exists a constant C(γ, α) such
that if

r1 =

 max
(
C(γ, α)m−

1
1−2α , 2m, r0

)
for n = 3

max
(
C(γ, α)m

1
2α ,
√

2m, r0

)
for n = 4,

then there exists ε > 0 such that

f(x) ≤ h1 − ε for |x| = r1

f(x) ≥ h1 + ε for |x| = 3r1,

where h1 = Λ + Sm(2r1). As a consequence, for all h ∈ (h1 − ε, h1 + ε), we
have

Br1 ⊂ Ωh ⊂ B3r1 .

Proof. By assumption, there is a constant Λ such that for all |x| > r0, we
have

|f(x)− (Λ + Sm(|x|))| ≤ γ|x|α.
Using the constant C(γ, α, a, b, c) from Lemma 4.2, we choose

C(γ, α) := max (C(γ, α, 1, 2, 1), C(γ, α, 2, 3, 3)) ,

and define r1 as in the statement of the lemma.
We claim that lemma holds with

ε = min (Sm(2r1)− Sm(r1)− γrα1 , Sm(3r1)− Sm(2r1)− γ(3r1)α) .
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First note that ε > 0 by Lemma 4.2 (with a = 1, b = 2, c = 1 for the first
term and with a = 2, b = 3, c = 3 for the second term). When |x| = r1, we
compute

f(x)− h1 = f(x)− (Λ + Sm(2r1))

= [f(x)− (Λ + Sm(|x|))] + [Sm(r1)− Sm(2r1)]

≤ γrα1 + [Sm(r1)− Sm(2r1)]
≤ −ε.

Similarly, when |x| = 3r1, we have

f(x)− h1 = f(x)− (Λ + Sm(2r1))

= [f(x)− (Λ + Sm(|x|))] + [Sm(3r1)− Sm(2r1)]

≥ −γ(3r1)α + [Sm(3r1)− Sm(2r1)]
≥ ε.

�

Lemma 4.4. Let n = 3 or 4. Let f be a Cn+1 uniformly (r0, γ, α)-
asymptotically Schwarzschild function of mass m, either entire or with min-
imal boundary, whose graph has nonnegative scalar curvature. Suppose Σh

is outward-minimizing for h in a dense subset. Then there exists a constant
C(γ, α) and a height h1 such that

Br1 ⊂ Ωh1 ,

and

V (h1) ≤

 C(γ, α) max
(
m−

2
1−2α ,m2, r2

0

)
for n = 3

C(γ, α) max
(
m

3
2α ,m

3
2 , r3

0

)
for n = 4,

where r1 is the radius defined in Lemma 4.3.

Proof. Clearly, there exists a regular value h1 for which Lemma 4.3 implies
that Σh1 lies in the annulus r1 < |x| < 3r1 and Σh1 is outward-minimizing.
In particular, Br1 ⊂ Ωh1 . Meanwhile, the outward-minimizing property
implies that V (h1) ≤ |∂B3r1 |, and the result follows. �

Theorem 4.5. Let n = 3 or 4. Let f be a Cn+1 uniformly (r0, γ, α)-
asymptotically flat function defined on Rn \Ω, either entire or with minimal
boundary, whose graph has nonnegative scalar curvature. Assume m > 0,
and that Σh is strictly mean-convex and outward-minimizing for almost ev-
ery h. Then there exists a constant C depending only on (r0, γ, α) such that
for ρ > 0 and any x ∈ Bρ, we have

f̄(x)− h0 ≤

{
C(m

−α
1−2α +m+

√
mρ) for n = 3

C
√
m(| logm|+ | log ρ|+ 1) for n = 4,

where f̄ is the extension of f such that f̄ is constant on each component of
Ω.
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Proof. In this proof, the constant C is assumed to depend on (r0, γ, α) and
may change from line to line. We choose h1 as in Lemma 4.4. Combining
Theorem 3.10 with the volume bound on V (h1) from Lemma 4.4, we find
that

h1 − h0 ≤

{
C
√
m[V (h1)]

1
4 for n = 3

C
√
m log[m−

3
2V (h1)] for n = 4

≤

{
C max(m

−α
1−2α ,m,

√
m) for n = 3

C
√
m(| logm|+ 1) for n = 4

≤

{
C(m

−α
1−2α +m) for n = 3

C
√
m(| logm|+ 1) for n = 4.

From Lemma 4.4, we know Br1 ⊂ Ωh1 for the r1 defined in Lemma 4.3. In
particular, f(x) − h0 ≤ h1 − h0 for |x| ≤ r1. For r1 < |x| < ρ, we can use
the bound from Lemma 4.1 to compute

f̄(x)− h1 ≤ Sm(|x|)− Sm(r1)

≤ Sm(|x|)
< Sm(ρ)

<

{
C
√
mρ for n = 3

C
√
m(| log ρ|+ | logm|) for n = 4.

The result follows. �

5. Convergence in the flat norm

We first recall the definition of flat distance in an open subset of Rn+1.

Definition 5.1. Let U be an open subset of Rn+1, and let T be a k-current
in Rn+1. Denote by MU the mass of a current in U . The flat norm of T in
U is defined by

FU (T ) = inf{MU (A) + MU (B) : T = A+ ∂B in U}
where the infimum is taken among k-currents A and (k + 1)-currents B in
Rn+1. The flat distance between two k-currents T1, T2 is defined by

dFU (T1, T2) = FU (T1 − T2).

Recall the height h0 in Definition 3.7.

Theorem 5.2. Let n ≥ 5. Let U be a ball of radius ρ in Rn+1. Let f be a
Cn+1 asymptotically flat function, either entire or with minimal boundary,
whose graph has nonnegative scalar curvature. Assume m > 0, and that Σh

is strictly mean-convex and outward-minimizing for almost every h. Then

dFU (graph[f ], {xn+1 = h0}) ≤ c(n)[(ρ+ 1)m
n
n−2 + ρnm

1
n−2 ],

where the two graphs are chosen to have consistent orientations (pointing
upward, say).
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Ugraph[f ]

B−

B+

≤ Cm
1

n−2

{xn+1 = h0}

A

Figure 2

Proof. Without loss of generality, we may assume that f has upward point-
ing mean curvature vector. Let M be the graph of f . We want to choose
currents A and B such that M − {xn+1 = h0} = A + ∂B in U , where the
two graphs are assumed to have upward orientation. Each component of
∂M bounds a region of a horizontal plane. We define A to be the sum of
these regions, taken with downward orientation, so that M −A is the graph
of f̄ , where recall that f̄ is the extension of f such that f̄ is constant on
each component of Ω. That is, M −A is just M with the boundaries “filled
in.” We can then define B to be the region of Rn+1 lying under M − A,
minus the region of Rn+1 lying under {xn+1 = h0}, both taken with positive
orientation. Clearly, (M −A)−{xn+1 = h0} = ∂B. Note that we can think
of B = B+ + B−, where B+ is the region of Rn+1 with positive orientation
that is below M−A and above height h0, and B− is the region of Rn+1 with
negative orientation that is above M − A and below height h0. Since they
are disjoint, MU (B) = MU (B+) + MU (B−). See Figure 2.

Note that since A, B+, and B− are submanifolds with multiplicity one,
their masses in U are the same as the volumes of their intersections with U .
By the isoperimetric inequality combined with the Penrose inequality [11],
we know that MU (A) ≤ c(n)|∂Ω|

n
n−1 ≤ c(n)m

n
n−2 for some c(n). By Theo-

rem 3.10, it is clear that MU (B+) ≤ c(n)ρnm
1

n−2 for some c(n). Meanwhile,
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for almost every h ≤ h0, we estimate the slices of B− ∩U using the isoperi-
metric inequality as follows:

Vol(B− ∩ U ∩ {xn+1 = h}) = Vol(Ωh ∩ U)

≤ c(n)V (h)
n
n−1

≤ c(n)V (h0)
n
n−1

≤ c(n)m
n
n−2 ,

where we used the definition of h0 and the fact that V is nondecreasing.
Therefore

MU (B−) =
∫ ρ

−ρ
Vol(B− ∩ U ∩ {xn+1 = h}) dh ≤ c(n)ρm

n
n−2 .

This completes the proof. �

Theorem 5.3. Let n = 3 or 4. Let U be a ball of radius ρ in Rn+1. Let
f be a Cn+1 uniformly (r0, γ, α)-asymptotically flat function, either entire
or with minimal boundary, whose graph has nonnegative scalar curvature.
Assume m > 0, and that Σh is strictly mean-convex and outward-minimizing
for almost every h. Then

dFU (graph[f ], {xn+1 = h0})

≤

{
C(r0, γ, α)[(ρ+ 1)m3 + ρ3m

−α
1−2α + ρ3m+ ρ

7
2
√
m] for n = 3

C(r0, γ, α)[(ρ+ 1)m2 + ρ4√m(| logm|+ | log ρ|+ 1)] for n = 4,

where the two graphs are chosen to have consistent orientations (pointing
upward, say).

Proof. The proof is almost identical to the proof of Theorem 5.2. We define
A, B+, and B− as before and obtain the same estimates for A and B− as
follows:

MU (A) ≤ c(n)m
n
n−2 and MU (B−) ≤ c(n)ρm

n
n−2 .

The only difference is the estimate of B+ that

MU (B+) ≤ c(n)ρn sup
Bρ

(f̄ − h0).

In Theorem 5.2, we used the fact that f̄ − h0 ≤ c(n)m
1

n−2 . For the lower
dimensional case, we simply replace this bound by the bound on f̄−h0 from
Theorem 4.5. �

Proof of Theorem 1.1. Choose a sequence Mi as in the hypotheses of The-
orem 1.1, where the “vertically normalized” assumption is the assumption
that h0 = 0. Let Π be the plane {xn+1 = 0}. In order to prove that Mi

weakly converges to Π in the sense of currents, let ω be a smooth compactly
supported n-form. We must show that (Mi −Π)(ω)→ 0.
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Choose Ai and Bi as in the proof of Theorem 5.2.

(Mi −Π)(ω) = (Ai + ∂Bi)(ω) = Ai(ω) +Bi(dω).

Since ω is supported in some ball U of radius ρ, the estimates of Theorems 5.2
and 5.3 show that MU (Ai) and MU (Bi) approach zero as the masses of the
Mi’s approach zero. The result follows. �

References

1. Hubert Bray and Felix Finster, Curvature estimates and the positive mass theorem,
Comm. Anal. Geom. 10 (2002), no. 2, 291–306. MR 1900753 (2003c:53047)

2. Justin Corvino, A note on asymptotically flat metrics on R3 which are scalar-flat
and admit minimal spheres, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3669–3678
(electronic). MR 2163606 (2007a:53077)

3. Felix Finster, A level set analysis of the Witten spinor with applications to curvature
estimates, Math. Res. Lett. 16 (2009), no. 1, 41–55. MR 2480559 (2010c:53052)

4. Felix Finster and Ines Kath, Curvature estimates in asymptotically flat manifolds
of positive scalar curvature, Comm. Anal. Geom. 10 (2002), no. 5, 1017–1031.
MR 1957661 (2004b:53051)

5. Alexandre Freire and Fernando Schwartz, Mass-capacity inequalities for conformally
flat manifolds with boundary, Comm. Partial Differential Equations 39 (2014), 98–119.

6. Lan-Hsuan Huang, Dan A. Lee, and Christina Sormani, Intrinsic flat stability of the
positive mass theorem for graphical hypersurfaces of euclidean space, arXiv:1408.4319
[math.DG] (2014).

7. Lan-Hsuan Huang and Damin Wu, The equality case of the penrose inequality for
asymptotically flat graphs, accepted by Trans. Amer. Math. Soc.

8. , Hypersurfaces with nonnegative scalar curvature, J. Differential Geom. 95
(2013), no. 2, 249–278. MR 3128984

9. Gerhard Huisken, In preparation.
10. Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the

Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437.
MR MR1916951 (2003h:53091)

11. Mau-Kwong George Lam, The Graph Cases of the Riemannian Positive Mass and
Penrose Inequalities in All Dimensions, ProQuest LLC, Ann Arbor, MI, 2011, Thesis
(Ph.D.)–Duke University. MR 2873434

12. Dan A. Lee, On the near-equality case of the positive mass theorem, Duke Math. J.
148 (2009), no. 1, 63–80. MR 2515100 (2010f:53054)

13. Dan A. Lee and Christina Sormani, Near-equality of the Penrose inequality for ro-
tationally symmetric Riemannian manifolds, Ann. Henri Poincaré 13 (2012), no. 7,
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